IS THE COOK'S DISTANCE USEFUL IN REFINING THE QUANTITATIVE STRUCTURE-PROPERTY LINEAR MODELS? – THE CASE OF PARTITION COEFFICIENT

Sorana BOLBOACĂ

"Iuliu Hatieganu" University of Medicine and Pharmacy Cluj-Napoca

OUTLINE

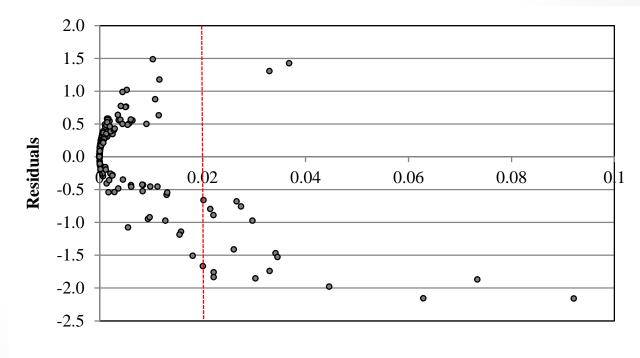
- AIM
- MATERIAL AND METHODS
- RESULTS
- CONCLUSION

AIM

- QSPR = Quantitative Structure-Property Relationship
- Partition coefficient (logP): lipophilicity governs both pharmacokinetics and pharmacodynamics of drugs.
- In silico molecular modeling
- <u>Research aim</u>:
 - to identify if and how withdrawing of influential compound(s) identified using the Cook's distance affect the characteristics of QSPRs models in case of partition coefficient

MATERIAL AND METHODS

Data set	Characteristics			
	Set abbreviation: OC			
	n (sample size) = 207			
organohalogen	Molecular descriptors that relate to electronic			
compounds	structure: E _{HOMO} (Highest Occupied Molecular			
	Orbital energy), E _{LUMO} (Lowest Unoccupied			
	Molecular Orbital energy)			
	Set abbreviation: AC			
	n (sample size) = 125			
aliphatic organic	I _{SET} : semi-empirical electrotopological index (takes			
compounds	into account the charges of the heteroatom and the			
1	carbon atoms attached to them through the			
	definition of an equivalent local dipole moment)			


MATERIAL AND METHODS

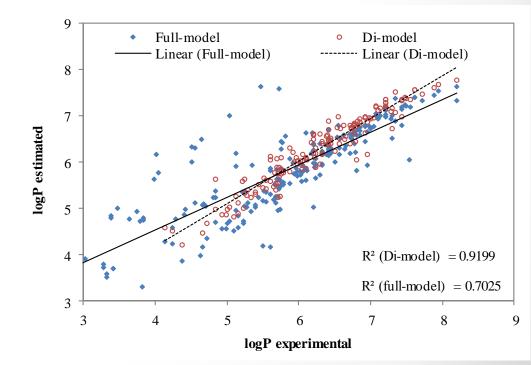
- Test normality Chi-Squared test
- Identify outlier(s) Grubb's test
- Identify influential(s) Cook's distance D_i > 4/n
- Construct and evaluate QSAR model R² & R_{adj}² &s & F-value (p-value)
- Compare the full model with D_i-model in terms of correlation coefficient – Steiger's test – 5% significance level

MATERIAL AND METHODS

- Validate the models:
 - 8 statistical parameters
 - Training (~2/3 n compounds, n = sample size) vs. Test experiment
- Test the overall performances of Cook's distance method using Fisher's Chi-Squared test

• Cook's distance as method to identify influential (threshold equal to 0.02): organohalogen compounds.

Cook's distance


32nd NATIONAL CONFERENCE ON MEDICAL INFORMATICS, RO-MEDINF 2012 15-17 November 2012, TIMIŞOARA, Romania

- Influential
 - Organohalogen set: 53 compounds (26%, 95%CI [20%-32%])
 - Aliphatic organic set: 33 compounds (27%, 95%CI [19%-35%])

Parameter	OC-full (n=207)	OC-D _i (n=154)	AC-full (n=124)	AC-D _i (n=91)
R ²	0.7025	0.9199	0.4259	0.9150
R ² _{adj}	0.6996	0.9188	0.4212	0.9140
Ś	0.6294	0.2302	1.2925	0.3211
F-value	241*	867*	90*	958*
R ² _{loo}	0.6928	0.9162	0.4077	0.9118
S _{loo}	0.6396	0.2355	1.3139	0.3270
F _{loo}	230*	825*	84*	920*

 R^2 = determination coefficient; R^2_{adj} = adjusted determination coefficient; s = standard error of estimated; F=value = statistics of Fisher's test; R^2_{loo} = determination coefficient in leave-one-out analysis; s = standard error of predicted; F_{loo} = Fisher's statistics in leave-one-out analysis; * = p-value < 0.0001

The correlation coefficient proved significantly higher (p < 0.0001) in D_i-model compared to full-model for both investigated sets, organohalogen compounds (Z-statistics = 6.704) and aliphatic organic compounds (Z-statistics = 8.022).

32nd NATIONAL CONFERENCE ON MEDICAL INFORMATICS, RO-MEDINF 2012 15-17 November 2012, TIMIŞOARA, Romania

RESULTS: MODELS VALIDATION

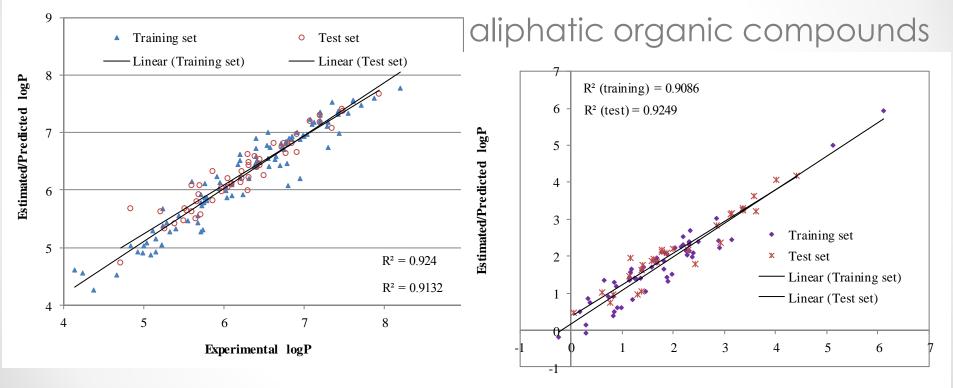
Parameter	Organohalogen compounds		Aliphatic organic compounds	
	Full-model	D _i -model	Full-model	D _i -model
MAE	0.7082	0.7124	0.7622	0.8190
MAPE	0.0874	0.0267	0.9086	0.3074
SEP	1	1	1	1
REP	17.05	15.89	41.41	52.90
RMSE	1.0049	1.0066	1.0082	1.0112
APV	1.0146	1.0197	1.0245	1.0335
APMSE	0.0049	0.0067	0.0083	0.0115
%PredErr	17.88	18.66	15.38	14.73

MAE = mean absolute error; MAPE = mean absolute percentage error;

SEP = standard error of prediction; **REP** = relative error of prediction;

RMSE = root-mean-square error; **APV** = average prediction variance;

APMSE = average prediction mean squared error;

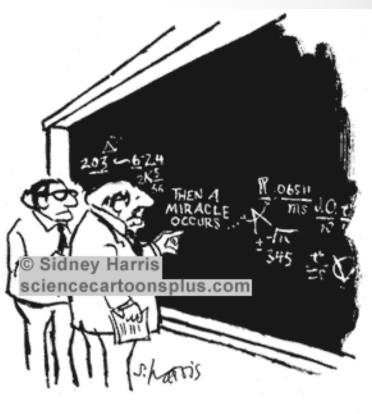

%PredErr = percentage prediction error

32nd NATIONAL CONFERENCE ON MEDICAL INFORMATICS, RO-MEDINF 2012 15-17 November 2012, TIMISOARA, Romania

Results: Training vs Test

Stat	Organohalogen compounds		Aliphatic organic compounds			
	Training	Test	Training	Test		
n	103	51	61	30		
R ²	0.9240	0.9132	0.9086	0.9249		
F-value	608	226	586	309		
p-value	< 0.0001	< 0.0001	< 0.0001	< 0.0001		
n = sample size; R ² = determination coefficient;						
F-value = Fisher's statistics; p-value = significance level						

organohalogen compounds


Experimental logP

32nd NATIONAL CONFERENCE ON MEDICAL INFORMATICS, RO-MEDINF 2012 15-17 November 2012, TIMIŞOARA, Romania

CONCLUSION

- Cook's distance approach proved able to identify those compounds with significant influence on the QSPR models in investigation of partition coefficient as function of descriptors on organohalogen and aliphatic organic compounds.
- Question(s) ...
 - Is this behavior the same unconcerned the sample(s) when partition coefficient is of interest?
 - How the influential are different by the compounds in the sample?

THANK YOU FOR ATTENTION!

"I THINK YOU SHOULD BE MORE EXPLICIT HERE IN STEP TWO,"

32nd NATIONAL CONFERENCE ON MEDICAL INFORMATICS, RO-MEDINF 2012 15-17 November 2012, TIMIȘOARA, Romania