Quantity of Information

1 octet (byte) (symbol o / b) = 8 bit

Symbol	Binary	Byte
kbit (kilobit) - kb	2^{10}	1024
Mbit (megabit) - Mb	2^{20}	1048576
Gbit (gigabit) -Gb	2^{30}	1073741824
Tbit (terabit) - Tb	2^{40}	1099511627776

1. How many bits can be stored on a CD of 700 Mb ?
2. How many kb can be stored on a CD of 800 Mb ?
3. A book has on average 2500 characters per page. We know that a character is stored in a byte. How many book pages fit on a floppy disk 1440 kb? But on a 700 MB CD? But on a 4 GB DVD?
4. If a book of 220 pages is on average 2000 characters per page and a character is stored in a byte, what size should be the device needed to store 350 books??
5. How many characters per page has a book of 500 pages stored on a file of 1 Mb (we know that one character is stored on 8 bytes)?
6. How many books of 512 pages (2560 characters per page, a character is stored in a byte) can be stored on a CD of 700 MB ? But on 4 GB DVD?
7. How many medical images with the average size of 150 kb can be stored on a CD of 700 MB ? But on an 800 MB CD? But on a 4 GB DVD?
8. Find the solution for the following operations:
a. $120 \mathrm{~kb}+120 \mathrm{~kb}=$ \qquad bytes
b. $200 \mathrm{~kb}+1024 \mathrm{~b}=$ \qquad kb
c. $100 \mathrm{Mb}+1000 \mathrm{~kb}+1 \mathrm{~Gb}=$.... kb
d. $120 \mathrm{~kb}+120 \mathrm{~kb}=$ \qquad b
e. $128 \mathrm{~b}+1020 \mathrm{o}=$ \qquad kb
