
PROBABILITIES & RANDOM VARIABLES 

“Some of the Problems about Chance having a great appearance of 

Simplicity, the Mind is easily drawn into a belief, that their Solution 

may be attained by the meer  Strength of natural good Sense; which 

generally proving otherwise and the Mistakes occasioned thereby being 

not infrequent, ‘tis presumed that a Book of this Kind, which teaches to 

distinguish Truth from what seems so nearly to resemble it, will be 

looked upon as a help to good Reasoning.” 
 

Abraham de Moivre (1667-1754) 



OUTLINE 

• Probabilities: Introduction 

• Odds and ratio 

• Properties of Probabilities 

• Conditional probabilities 

• Random variables 
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PROBABILITY 

• Basic concepts 

• Conditional probabilities 

• Probability Properties 

• Probability Rules 

 

 

• Probability is a way of expressing knowledge or 

belief that an event will occur or has occurred 
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PROBABILITY 

• Data could be generated by a: 

• Purely systemic process 

• Purely random process 

• Combination of systemic and random processes 
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HYPOTHESIS 

• We would like to know which of the three explanations 

is most likely correct 

• The purely systematic process is easy to confirm or 

reject if we look at the graphical distribution of data (this 

kind of process is rarely seen in medical sciences) 

 

• Thus, we have two questions:  

• Is the process purely random? 

• Is the process a combination of a systemic and random 

processes? (complex model) 5 



RANDOM PROCESS 

Definitions: 

 

• Test: application of an experiment over an element of 

population or sample 

• Event: the result of a test 

• Random event: the event which appear as result of a 

single test 
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BINOMIAL RANDOM EVENT 

• In throwing a coin we have two possible outcomes 
(heads or tails) associated with a specified 
probability (0.5) 

• A probability of an event A is represented by a real 
number in the range from 0 to 1 and written as P(A), 
p(A) or Pr(A) 

• We can not say much about the absolute frequency 
of one of two possible events for a few throws but 
we can say about the relative frequency obtained 
from the coin flipped several times. 
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RANDOM EVENTS 

• When we say something can be described by a random 

generating process, we do NOT necessarily mean that it is 

caused by a mystical thing called “chance” 

 

• There may be many independent systematic factors that 

combine together to create the observed random probability 

distribution. (e.g. coin tosses) 

 

• When we say “random” we just mean that we ca not do any 

better than some basic (but characteristic) probability 

statements about how the outcomes will vary 8 



PROBABILITY 

• Probabilities are numbers which describe the 

likelihoods of random events. 

Pr(A) [0, 1] 

• Let A be an event: 

• Pr(A) = the probability of event A 

• If A is certain, then Pr(A) = 1 

• If A is impossible, then Pr(A) = 0 
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SUBJECTIVE VS OBJECTIVE PROBABILITY 

Subjective probability: 
• Established subjective 

(empiric) base on previous 

experience or on studying 

large populations 

• Implies elementary that are not 

equipossible (equally likely) 

 

Objective probability:  
• Equiprobable outcomes 

• Geometric probability 

Formula of calculus: 

• If an A event could be 
obtained in S tests out of n 
equiprobable tests, then the 
Pr(A) is given by the number 
of possible cases  

• Pr(A) = (no of favorable 
cases)/(no of possible cases) 
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CHANCES AND ODDS 

• Chances are probabilities expressed as percents.  
• Range from 0% to 100%. 

• Ex: a probability of 0.65 is the same as a 65% chance. 

• The odds for an event is the probability that the 
event happens, divided by the probability that the 
event doesn’t happen.  

• Can take any positive value 

• Let A be the event. Odds(A) = Pr(A)/[1-Pr(A)]  

• Where 1-Pr(A) = Pr(nonA) 

• Example: Pr(A) = 0.75; a probability of 0.75 is the same as 
3-to-1 odds (0.75/(1-0.75)=0.75/0.25=3/1) 
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Events Space 

• Is a list of all possible outcomes of a random process  

• When we roll a die, the events space is {1, 2, 3, 4, 5, 6} 

• When I toss a coin, the events space is {head, tail}. 

• An event is a member of events space 

• “head” is a possible event when I toss a coin 

•  “a number less than 4” is a possible event when I roll a die 

• Events are associated with probabilities! 
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PROBABILITY PROPERTIES 

• Take values between 0 and 1: 

0 ≤  Pr(A) ≤  1 

• Pr(evets space) = 1 

• The probability that something happens is one minus 

the probability that it does not: 

Pr(A) = 1 - Pr(nonA) 
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PROBABILITY BE EXAMPLE 

• If equally likely outcomes: 

• Pr(A) = (outcomes favorable to event A)/(outcomes total) 

• What is the probability of getting exactly 2 heads in three coin 

tosses? (Let A be the event of getting 2 heads in 3 coin tosses.) 

HHH HTT 

HHT TTT 

HTH TTH 

THH THT 

 Outcomes with exactly 2 
heads = 3 

 Total possible outcomes = 8 

 Pr(A) = 3/8 

 

 



PROBABILITY 

• Compatible events: events that can occur 

simultaneously: 

• A = {SBP < 140 mmHg} 

• B = {DBP < 90 mmHg} 

• SBP = systolic blood pressure; DBS = diastolic blood 

pressure 

• Incompatible events: events that can not occur 

simultaneously: 

• A = {SBP < 140 mmHg} 

• B = {140 ≤  SBP < 200 mmHg} 
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PROBABILITY 

• Event A imply event B IF the event B is produce any 

time when even A is produce: 

• Symbol A  B 

• A = {TBC} 

• B = {positive tuberculin test} 

• TBC = tuberculosis 
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• Let A and B be two events:  

• The conditional probability of B, given A, is written as 

Pr(B|A). It is the probability of event B, given that A has 

occurred. 

• Example: (Tuberculin Test+|TBC) is the probability of 

obtaining a positive tuberculin test to a patient with 

tuberculosis 

• Pr(B|A) is not the same things as Pr(A|B)  

 

CONDITIONAL PROBABILITY 
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TBC+ TBC- 

Test+ 15 12 

Test- 25 18 

• Pr(A) = (15+25)/(15+12+25+18) = 0.57 

(prevalence) 

• Pr(nonA) = (12+18)/(15+12+25+18) = 0.43 

• Pr(B|A) = probability of a positive tuberculin test 

to a patient with TBC = 15/(15+25) = 0.38 = 

Sensibility (Se) 

 Let: 

 A = {TBC+} 

 B = {Tuberculin Test+} 

CONDITIONAL PROBABILITY 
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19 

TBC+ TBC- 

Test+ 15 12 

Test- 25 18 

• Pr(nonB|nonA) = probability of obtaining a 
negative test to a patient without TBC = 
18/(18+12) = 0.60 = Specificity (Sp) 

• Pr(A|B) = probability that a person with TBC to 
have a positive tuberculin test = 15/(15+12) = 0.56 
= Predictive Positive Value (PPV) 

 Let: 

 A = {TBC+} 

 B = {Tuberculin Test+} 

CONDITIONAL PROBABILITY 
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20 

TBC+ TBC- 

Test+ 15 12 

Test- 25 18 

• Pr(nonA|nonB) = probability that a person without 

TBC to have a negative tuberculin test = 

18/(18+25) = 0.42 = Negative Predictive Value 

(NPV) 

 Let: 

 A = {TBC+} 

 B = {Tuberculin Test+} 

CONDITIONAL PROBABILITY 
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TBC+ TBC- 

Test+ 15 12 

Test- 25 18 

• Positive False Ratio: PFR = Pr(B|nonA) 

• Negative False Ratio: RFN = Pr(nonA|B) 

 Let: 

 A = {TBC+} 

 B = {Tuberculin Test+} 

CONDITIONAL PROBABILITY 
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INDEPENDENT EVENTS: CONDITIONAL 

PROBABILITIES 

• Events A and B are independent if the probability of event B is 
the same whether or not A has occurred. 

• Two events A and B are Independent IF  

 Pr(AB)  Pr(A)  Pr(B) 

• If (and only if) A and B are independent, then: 

• Pr(B|A)  Pr(B|nonA) = Pr(B) 

• Pr(A|B)  Pr(A|nonB) = Pr(A) 

• It expressed the independence of the two events: the probability 
of event B (respectively A) did not depend by the realization of 
event A (respectively B) 

• Example: if a coin is toss twice the probability to obtain “head” to 
the second toss is always 0.5 and is not depending if at the first toss 
we obtained “head” or “tail”. 
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JOINT PROBABILITY 

• Reunion (OR):  

• Symbol: AB 

• At least one event (A OR B) occurs 

• Intersection (AND):  

• The probability that A and B both occur 

• Use the multiplication rule 

• Symbol: AB  

• the events A and B occur simultaneously 

• Negation:  

• Symbol: nonA 
23 



PROBABILITY RULES 

• Addition Rule: probability of A or B:  

Pr(A or B) = Pr(A) + Pr(B) 

when A and B are mutually exclusive 

 

• Multiplication Rule: probability of A and B: 

P(A and B) = P(A) ∙ P(B) 

when A and B are independent 
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PROBABILITY RULES: ADDITION RULE 

• Let A and B be two events: 

Pr(AB)  Pr(A)  Pr(B) – Pr(AB) 

Pr(A or B)  Pr(A)  Pr(B) – Pr(A and B) 

• A and B mutually exclusive:  

• Pr(AB) = 0 

• Pr(A and B) = 0 

A B 
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PROBABILITY RULES: ADDITION RULE 

 A = {SBP of mother > 140 mmHg} 

 Pr(A) = 0.25 

 B = {SBP of father > 140 mmHg} 

 Pr(B) = 0.15 

 What is the probability that mother or father 

to have hypertension? 

Pr(AB)  0.25  0.15 – 0 = 0.40 

Pr(A or B)  0.25  0.15 – 0 = 0.40 
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 In a cafe are at a moment 20 people, 10 like tea, 10 like 

coffee and other 2 like tea and coffee.  

 What is probability to random extract from this 

population one person who like tea or coffee? 

Pr(teacoffee) = Pr(tea) + Pr(coffee) - Pr(teacoffee) 

Pr(tea or coffee) = Pr(tea) + Pr(coffee) - Pr(tea and 

coffee) 

  

Pr(tea or coffee) = 0.50 + 0.50 – 0.10 = 0.90 

 

PROBABILITY RULES: ADDITION RULE 
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PROBABILITY RULES: MULTIPLICATION 

RULE 

• Let A and B be two events: 

Pr(AB) = Pr(A)∙Pr(B|A) 

Pr(A and B) = Pr(A)∙Pr(B|A) 

• Independent events: Pr(B|A) = Pr(B) 

 

A B 
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• A = {SBP of mother > 140 mmHg} 

• Pr(A) = 0.10 

• B = {SBP of father > 140 mmHg} 

• Pr(B) = 0.20 

• Pr(AB) = 0.05; Pr(A  and B) = 0.05 

• The two events are dependent or independent? 

Pr(AB) = Pr(A)∙Pr(B) – independent events 

0.05 ≠  0.10*0.20 → the events are dependent 

Probability Rules: Multiplication Rule 
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BINOMIAL RANDOM PROCESSES 

• Two possible outcomes 

• Heads or tails 

• Make basket or miss basket 

• Fatality, no fatality 

 

• With probability p (or 1-p) 
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BINOMIAL RANDOM PROCESSES 

• Predicting a specific versus a general pattern 

• Which lotto ticket would you buy? 

• Equally likely (or unlikely) to win: 

• 26 45 8 72 91 

• 26 26 26 26 26 – less likely to be bought 

• Each specific ticket is equally (un)likely to win 

• A ticket that “looks like” ticket A (with alternating 

values) is more likely than one that “looks like” 

ticket B (with identical values).  
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BINOMIAL RANDOM PROCESSES 

• Probabilities for specific patterns get smaller as you run 

more tests 

• What is the probability of getting heads on the second test 

and the tails on all other trials? 

• P(T,H) = 0.25 

• P(T, H, T) = 0.125 

• P(T, H, T, T) = 0.0625 
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BINOMIAL RANDOM PROCESSES 

• What is the probability of getting at least one heads when 

you toss a coin multiple times? 

• Two tosses: Pr(HT or TH or HH) = 0.75 

• Three tosses: Pr(HTT or THT or TTH or THH or 

HHT or HHH) = 0.875 

• Four tosses: 0.9375 
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SUMMARY 

• Addition rules: 

• Pr(AB)  Pr(A)  Pr(B) – Pr(AB) 

• Pr(A or B)  Pr(A)  Pr(B) – Pr(A and B) 

• Mutually exclusive events: 

• Pr(AB)  Pr(A)  Pr(B) 

• Pr(A or B)  Pr(A)  Pr(B): 

• Multiplication Rule: 

• Pr(AB) = Pr(A)∙Pr(B|A) 

• Pr(A and B) = Pr(A)∙Pr(B|A) 

• Independent events: 

• Pr(AB) = Pr(A)∙Pr(B) 
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RANDOM VARIABLES  

& 
DISCRETE PROBABILITY 

DISTRIBUTION 
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RANDOM VARIABLE ...  

WHAT ABOUT THEM? 

• Definition 

• Introduction: probability distribution 

• Metric data: 

• Discrete 

• Continuous 
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DEFINITION 

• Let X be a quantitative 

variable measured or 

observed from an 

experiment 

• The value of X is a random 

variable 

 

• Example: 

• Number of red cells in 

blood 

• Number of bacteria 

from the students hands 

• Average of depression 

score obtained from the 

application of a test on 

a sample of patients 

with malign tumors 37 



RANDOM VARIABLES 

 

• Arithmetic mean 

• Standard deviation 

• Proportion 

• Frequency 

• All are random variables 

38 



TYPES OF RANDOM VARIABLES 

Discrete: 

• Can take a finite number of 

values 

• The number of peoples with 

RH- from a sample 

• The number of children 

with flue from a collectivity 

• The number of anorexic 

students from university 

• Pulse 

Continuous: 

• Can take an infinite number of 

values into a defined range 

• Vary continuously in defined 

range 

 

• Body temperature 

• Blood sugar concentration 

• Blood pressure 

39 



TYPES OF RANDOM VARIABLES 

• Generally, means are continuous random variables 

and frequencies are discrete random variables 

• Examples: 

• The mean of lung capacity of a people who work in 

coal mine 

• The number of patients with chronic B hepatitis 

hospitalized in Cluj-Napoca between 01/11-

05/11/2008. 
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PROBABILITY DISTRIBUTION 

Discrete 
 

• The probabilities associated 

with each specific value 

Continuous 
 

• The probabilities associated 

with a range of values 
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DISCRETE PROBABILITY DISTRIBUTIONS 

Event space 

• Suppose that we toss 3 

coins. 

• Let X be the number of 

“heads” appearing 

• X is a random variable 

taking one of the following 

values {0,1,2,3} 

Event space 

• Let us suppose that we have 

an urn with black and white 

balls. We win $1 for every 

white and lose $1 for every 

black.  Let X = total 

winnings. 

• X is a random variable that 

can take one of the following 

values {-2,0,2}  
42 



43 

• The probability of X distribution: list of values 

from the events space and associated probabilities 

 Let X be the outcome of 
tossing a die 

 X is a random variable 
that can take one of the 
following values {1, 2, 
3, 4, 5, 6} 

Xi Pr(X i) 

1 1/6 

2 1/6 

3 1/6 

4 1/6 

5 1/6 

6 1/6 

DISCRETE PROBABILITY DISTRIBUTIONS 
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• The probability of X lists the values in the events space and 

their associated probabilities 

Xi Pri 

1 1/6 

2 1/6 

3 1/6 

4 1/6 

5 1/6 

6 1/6 

DISCRETE PROBABILITY DISTRIBUTIONS 
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• Let X be the number of “head” results by throwing twice two 
coins. What is the probability distribution? 
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Xi Pri 

0 1/4 

1 2/4 

2 1/4 

DISCRETE PROBABILITY DISTRIBUTIONS 
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• Probability Distribution: symbols 

 

 

 

• Property: the probabilities that appear in 

distribution of a finite random variable verify the 

formula:    

 










)xPr(...)xPr()xPr(

X...XX
:X

n21

n21





n

1i

i 1)XPr(

DISCRETE PROBABILITY DISTRIBUTIONS 
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• The mean of discrete probability distribution (called 

also expected value) is give by the formula: 

 

 

 

• Represents the weighted average of possible values, 

each value being weighted by its probability of 

occurrence. 





n

1i

ii )XPr(X)X(M

DISCRETE PROBABILITY DISTRIBUTIONS 
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Example:  

• Let X be a random variable represented by the number of 

otitis episodes in the first two years of life in a 

community.  This random variable has the following 

distribution: 

 

 

 

• What is the expected number (average) of episodes of 

otitis during the first two years of life? 










017.0039.0095.0185.0271.0264.0129.0

6543210
:X

DISCRETE PROBABILITY DISTRIBUTIONS 
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• What is the expected number (average) of episodes of 

otitis during the first two years of life? 

 

 

 

 

• M(X) = 0·0.129 + 1·0.264 + 2·0.271 + 3·0.185 + 4·0.095 + 

5·0.039 + 6·0.017 

• M(X) = 0 + 0.264 + 0.542 + 0.555 + 0.38 + 0.195 + 0.102 

• M(X) = 2.038 










017.0039.0095.0185.0271.0264.0129.0

6543210
:X

DISCRETE PROBABILITY DISTRIBUTIONS 
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• Variance: is a weighted average of the squared 

deviations in X  

 

 

 

• Standard deviation: 





n

1i

i

2

i )XPr())X(MX()X(V





n

1i

i

2

i )XPr())X(MX()X(V)X(

DISCRETE PROBABILITY DISTRIBUTIONS 
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Xi Pr(Xi) Xi*Pr(Xi) Xi-M(X) (Xi-M(X))2 (Xi-M(X))2*Pr(Xi) 

0 0.129 0 -2.038 4.153 0.536 

1 0.264 0.264 -1.038 1.077 0.284 

2 0.271 0.542 -0.038 0.001 0.000 

3 0.185 0.555 0.962 0.925 0.171 

4 0.095 0.38 1.962 3.849 0.366 

5 0.039 0.195 2.962 8.773 0.342 

6 0.017 0.102 3.962 15.697 0.267 

M(X)=2.038 V(X)=1.967 

σ(X)=1.402 

DISCRETE PROBABILITY DISTRIBUTIONS: V(X), σ(X) 
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• Bernoulli: head versus tail (two possible 

outcomes) 

• Binomial: number of ‘head’ obtained by throwing 

a coin of n times 

• Poisson: number of patients consulted in a 

emergency office in one day 

KNOWN DISCRETE DISTRIBUTIONS 
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BINOMIAL DISTRIBUTION 

• An experiment is given by repeating a test of n 

times (n = known natural number). 

• The possible outcomes of each attempt are two 

events called success and failure 

• Let noted with p the probability of success and 

with q the probability of failure (q = 1 - p)  

• The n repeated tests are independent 
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• The number of successes X obtained by performing the 

test n times is a random variable of n and p parameters 

and is noted as Bi(n,p) 

• The random variable X can take the following values: 0, 

1, 2,...n 

• Probability that X to be equal with a value k is given by 

the formula: 

 

 

• where: 

knkk

n qpC)kXPr( 

)!kn(!k

!n
Ck

n




BINOMIAL DISTRIBUTION 
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• The mean or expected value of a binomial 

distribution is: 

M(X) = n·p 

• Variance: 

V(X) = n·p·q 

• Standard deviation: 

σ(X) = √ (n·p·q) 

BINOMIAL DISTRIBUTION 

55 



• What is the probability to have 
2 boys in a family with 5 
children if the probability to 
have a baby-boy for each birth 
is equal to 0.47 and if the sex 
of children successive born in 
the family is considered an 
independent random variable? 

• p=0.47 

• q=1-0.47=0.53 

• n=5 

• k=2 

• Pr(X=2)=10·0.472·0.533 

• Pr(X=2) = 0.33 

 

knkk

n qpC)kXPr( 

10
12

120

)123(12

12345

)!25(!2

!5
C2

5 








BINOMIAL DISTRIBUTION 
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POISSON DISTRIBUTION 

• Random Poisson variable take a countable infinity of 

values (0,1,2,...,k,... ) that is the number of 

achievements of an event within a given range of 

time or place 

• number of entries per year in a given hospital 

• white blood cells on smear 

• number of decays of a radioactive substance in a given 

time T 
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• POISSON random variable: 

• Is characterized by theoretical parameter θ 

(expected average number of achievement for a 

given event in a given range) 

• Symbol: Po(θ) 

• Poisson Distribution: 

 

!k

e
)kXPr(

k




















!k
e

k
:X

k

POISSON DISTRIBUTION 
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• Mean of expected values: 

M(X) = θ 

• Variance:  

V(X) = θ 

POISSON DISTRIBUTION 
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• The mortality rate for 
specific viral pathology is 
7 per 1000 cases. What is 
the probability that in a 
group of 400 people this 
pathology to cause 5 
deaths? 

• n=400 

• p=7/1000=0.007 

• θ=n·p=400·0.007=2.8 

• e=2.718281828=2.72 

 

 

Pr(X=5) =  

= (2.72-2.8·2.85)/(5·4·3·2·1) 

=10.45/120 

=0.09 

60 
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SUMMARY 

• Random variables could be discrete or continuous. 

• For random variables we have: 

• Discrete probability distributions 

• Continuous probability distribution  

• It is possible to compute the expected values 

(means), variations and standard deviation for 

discrete and random variables. 
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