# Problems by Examples 

Sorana D. Bolboacă

## Objectives

- Variables \& data
- Frequencies tables
- Descriptive statistics
- Probabilities


## VARIABLES \& DATA

5)* A study was conducted to measure the effect of smoking upon the oral cancer. The following variables were measured for each patient included in the study: smoking status (yes/no), number of white blood cells (/L), and oral cancer (present/absent). The scales of these variables are:
a) Nominal, ratio, ratio
b) Ordinal, ratio, interval
c) Nominal, interval, ordinal
d) Nominal, ratio, nominal
e) Nominal, ratio, ordinal

## VARIABLES \& DATA

6)* All of the following are variables, EXCEPT:
a) Maximum value of teeth for one patient
b) The number teeth extraction during life-time
c) The age of patients diagnosed with oral cancer
d) The number of consultations in a dental office
e) The dimensions of extracted tooth

## Frequency Tables

|  | Absolute frequency | Relative frequency |
| :---: | :---: | :---: |
| Diagnosis | No. patients | Percent (\%) |
| Asphyxia at birth | 527 | 26.1 |
| Obstetrical injuries | 92 | 4.6 |
| Septic status | 7 | 0.3 |
| Pneumonia | 181 | 9.0 |
| Diarrhea | 8 | 0.4 |
| Congenital malformations | 598 | 29.6 |
| Other causes | 606 | 30.0 |
| Total | 2019 | 100 |

## Frequency Tables

The sum of absolute frequencies of all values in the series that are less than or equal to $\mathrm{x} / \mathrm{n}$

The sum of absolute frequencies of all values in the series that are less than or equal to x

| Diagnosis | $\mathbf{f}_{\mathbf{a}}$ | $\mathbf{f}_{\mathbf{r}}$ | $\mathbf{f}_{\mathbf{a}}$ cumulat $\uparrow$ | $\mathbf{f}_{\mathbf{r}}$ cumulat $\uparrow$ |
| :--- | ---: | ---: | ---: | ---: |
| Asphyxia at birth | 527 | 26.10 | 527 | 26.10 |
| Obstetrical injuries | 92 | 4.56 | 619 | 30.66 |
| Septic status | 7 | 0.35 | 626 | 31.01 |
| Pneumonia | 181 | 8.96 | 807 | 39.97 |
| Diarrhea | 8 | 0.40 | 815 | 40.37 |
| Congenital malformations | 598 | 29.62 | 1413 | 69.99 |
| Other causes | 606 | 30.01 | $\mathbf{2 0 1 9}$ | $\mathbf{1 0 0}$ |
| Total | $\mathbf{2 0 1 9}$ | $\mathbf{1 0 0}$ |  |  |

## Frequency TABLES

18)     * The statistical series of incubation (expressed in days) for a infecto-contagious disease contains the following data: 7; 3; 4; 7; 6; 6; 4; 5; 3; 7; 5; 4; 7; 6; 2 ; 3 ; 5; and 6. The ascending cumulative absolute frequency of 7 corresponds to:
a) 2 days
b) 3 days
c) 4 days
d) 6 days
e) 7 days

## Frequency TABLES

16)     * The statistical series of incubation (expressed in days) for a infecto-contagious disease contains the following data: 7; 3; 4; 7; 6; 6; 4; 5; 3; 7; 5; 4; 7; 6; 2; 3 ; 5 ; and 6 . The relative frequency of 0.06 corresponds to:
a) 2 days
b) 3 days
c) 4 days
d) 6 days
e) 7 days

## FREQUENCY TABLES

17)     * Let be a statistical series with the following data: $40,60,20,20,60,80,80,40,60$, and 80 . The ascending cumulative relative frequency of 0.4 corresponds to:
a) 20
b) 40
c) 60
d) 80
e) None is correct

## DESCRIPTIVE STATISTICS

- The following are days of illness in tooth abscesses since consulting a dentist: $1,3,5,4$, $5,3,3,3,3,5,5,5,2,3,4,3,2$, and 4 .
- Compute for this series the mean, median, mode, standard deviation, variance, range (amplitude) and coefficient of variation.
$\square$ Which of the following parameter characterize better the series of data: median, mean or mode?


## Probabilities

11) The following are compatible events (can be achieved simultaneously):
a) $A=\{$ Systolic blood pressure < 140 mmHg$\}, \mathrm{B}=$ \{Diastolic blood pressure $<90 \mathrm{mmHg}$ \}
b) $\mathrm{A}=\{$ Systolic blood pressure $<140 \mathrm{mmHg}\}, \mathrm{B}=\{140 \leq$ Systolic blood pressure < 200 mmHg$\}$
c) $A=\{$ Diastolic blood pressure $<95 \mathrm{mmHg}\}, \mathrm{B}=\{95 \leq$ Diastolic blood pressure < 120 mmHg \}
d) $\mathrm{A}=\{$ Systolic blood pressure $<130 \mathrm{mmHg}\}, \mathrm{B}=\{95 \leq$ Diastolic blood pressure < 120 mmHg$\}$
e) $A=\{$ Systolic blood pressure $<160 \mathrm{mmHg}\}, B=\{135 \leq$ Systolic blood pressure < 180 mmHg \}

## Probabilities

- Let A be the event that the first child in a family with two children has hyperdontia (supernumerary teeth). Let B be the event that the second child in a family with two children to has hyperdontia. It is known that $\operatorname{Pr}(A)=0.03$, $\operatorname{Pr}(B)=0.05$ and $\operatorname{Pr}(A$ and $B)=0.015$. The $A$ and $B$ events are:
a) Dependent
b) Independent
c) Could not be determined based on provided data
d) Mutually exclusive
e) None is correct


## Probabilities

A sample of 15 oral cancer-cases and 12 controls, aged between 35 and 45 years old was investigated. 12 of the oral cancer-cases and 10 of the controls had at least one
Capnocytophaga gingivalis infection (considered as risk factor for oral cancer).

1. Construct the observed contingency table.
2. Identify in the observed table the following values: TP-FP-FNTN
3. Compute the following parameters: prevalence, probability that a person with oral cancer to had at least one infection with Capnocytophaga gingivalis, probability that a person without oral cancer to had at least one infection with Capnocytophaga gingivalis, ... , the odds of having oral cancer when
Capnocytophaga gingivalis infection occurred
