Quantity of information:

1 octet (byte) (symbol o / B) = 8 bits

Symbol	Binary	Byte
kbyte (kilobit) – kB	2 ¹⁰	1024
Mbyte (megabit) – MB	2 ²⁰	1048576
Gbyte (gigabit) – GB	2 ³⁰	1073741824
Tbyte (terabit) – TB	2 ⁴⁰	1099511627776

DESCRIPTIVE STATISTICS

 $\overline{Me} = x_{\frac{n+1}{2}}$ n = even $Me = \frac{x_{\frac{n}{2}} + x_{\frac{n}{2}+1}}{2}$

<u>Amplitude (Range)</u>: $R = X_{max} - X_{min}$ Centralvalue= $\frac{X_{min} + X_{max}}{2}$

BAYES Formula:

 $Pr(A | B) = \frac{Pr(B | A) \cdot Pr(A)}{Pr(B | A) \cdot Pr(A) + Pr(B | nonA) \cdot Pr(nonA)}$

RANDOM VARIABLE
Mean (expected value):Mean (expected value):
$$M(X) = \sum_{i=1}^{n} X_i \cdot Pr(X_i)$$
Variance: $V(X) = \sum_{i=1}^{n} (X_i - M(X))^2 \cdot Pr(X_i)$ Standard
deviation: $\sigma(X) = \sqrt{V(X)} = \sqrt{\sum_{i=1}^{n} (X_i - M(X))^2 \cdot Pr(X_i)}$

BINOMIAL RANDOM VARIABLES Binomial DISTRIBUTION:

$$Pr(X=k) = C_n^k p^k q^{n-k} \text{ where } C_n^k = \frac{n!}{k! \cdot (n-k)!}$$

Mean: $M(X) = n \cdot p$ Variance: $V(X) = n \cdot p \cdot q$ Standard deviation: $\sigma(X) = \sqrt{V(X)} = \sqrt{n \cdot p \cdot q}$

POISSON RANDOM VARIABLE

$$K: \begin{pmatrix} k \\ e^{-\theta} \cdot \frac{\theta^k}{k!} \end{pmatrix} \qquad Pr(X=k) = \frac{e^{-\theta} \cdot \theta^k}{k!}$$

e = 2.718281828; θ = n·p (n = sample size, p = probability of the apparition of an event).

CONFIDENCE LEVELS

PEARSON CORRELATION COEFICIENT $r = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sqrt{\sum (x - \overline{x})^2 \sum (y - \overline{y})^2}}$

CHI-SQUARE TEST (
$$\chi$$
2): $\chi^2 = \sum_{i=1}^{r.c} \frac{(f_i^0 - f_i^t)^2}{f_i^t}$

where $\chi^2 = \chi^2$ test statistic; f_i^o = observed frequency; f_i^t = theoretical frequency.

Critical region for $\alpha = 0.05$ is [3.84, ∞).

- If $\chi^2 \in [3.84; \infty)$ H₀ is not accepted with a type I risk of error (α).
- If $\chi^2 \notin [3.84; \infty)$ H₀ is accepted with a type II risk of error (β).

Z TEST FOR PROPORTIONS (comparison of an observed frequency with a theoretical frequency)

$$z = \frac{f - p}{\sqrt{\frac{p(1 - p)}{n}}}$$

where p = theoretical frequency (population frequency); f = observed frequency, n = sample size.

Z TEST FOR PROPORTIONS (testing the equality of two proportions)

 $z = \frac{(p_1 - p_2)}{\sqrt{p \cdot (1 - p) \cdot \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}, p = \frac{p_1 n_1 + p_2 n_2}{n_1 + n_2}$

where p_1 = frequency for 1st sample; n_1 = sample size of 1st sample; p_2 = frequency of 2nd sample; n_2 = sample size for 2nd sample.

Z TEST FOR COMPARING OF A SAMPLE MEAN WITH A POPULATION MEAN (equal variances)

$$Z = \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}} \quad \begin{array}{l} \text{where } \mu = \text{population mean; } X = \text{sample mean; } \sigma \\ = \text{population standard deviation; } n = \\ \end{array}$$

Critical region for α = 0.05 (two-tailed test): (- ∞ , -1.96] \cup [1.96 , $\infty)$

RISKS AND ODDS ON 2×2 CONTINGENCY TABLE

	Disease+	Disease -	Total
Test +	AP	FP	= AP+FP
Test -	FN	AN	= FN+AN
Total	= AP+FN	=FP+AN	= AP+FP+FN+AN = n

Name	Formula
False positive rate	=FP/(FP+AN)
False negative rate	=FN/(FN+AP)
Sensibility	=AP/(AP+FN)
Specificity	=AN/(AN+FP)
Accuracy	=(AP+AN)/n
Predictive positive value	=AP/(AP+FP)
Predictive negative value	=AN/(AN+FN)
Relative risk	=AP(FP+AN)/FN(AP+FP)
Odds ratio	=(AP·AN)/(FN·FP)
Attributable risk	=AP/(AP+FP)-FN/(FN+AN)

STUDENT (T) TEST FOR COMPARING A MEAN WITH A KNOWN MEAN (unknown variances)

 $t = \frac{X - \mu}{\frac{s}{\sqrt{n}}}$ where μ = population mean; \overline{X} = sample mean; s = sample standard deviation; n = sample size.

- Degree of freedom (df): df = n-1
- Critical region for α = 0.05 (two-tailed test): (- ∞ , -t_{n-1, 0.025}] \cup [t_{n-1, 0.025}, ∞)

STUDENT (T) TEST FOR COMPARING TWO MEANS (equal variances)

$$t = \frac{\overline{X}_{1} - \overline{X}_{2}}{s \cdot \sqrt{\left(\frac{1}{n_{1}} + \frac{1}{n_{2}}\right)}}, \text{ where } s = \sqrt{\frac{(n_{1} - 1) \cdot s_{1}^{2} + (n_{2} - 1) \cdot s_{2}^{2}}{n_{1} + n_{2} - 2}}$$

 \overline{X}_1 = mean of 1st sample; n₁ = sample size of 1st sample; s₁² = variance of 1st sample; \overline{X}_2 = mean of 2nd sample; n₂ = sample size of 2nd sample; s₂² = variance of 2nd sample

STUDENT (T) TEST FOR COMPARING TWO PAIRED MEANS

$$t = \frac{d}{\frac{s}{\sqrt{n}}}$$
, where $\bar{d} = \frac{d_1 + d_2 + ... d_n}{n}$

s = standard deviation of differences; n = sample size

Z TEST FOR COMPARIND THE MEANS OF TWO POPULATIONS (KNOWN AND UNEQUAL VARIANCES)

$$z = \frac{X_1 - X_2}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}}$$

where \overline{X}_1 mean of 1st sample; n_1 = sample size of first sample; s_1^2 = variance of first sample; \overline{X}_2 = mean of 2nd sample; n_2 = sample size of 2nd sample; s_2^2 = variance of 2nd sample.

SAMPLE SIZE ESTIMATION: MEAN TESTING (normal distribution) / SAMPLE SIZE ESTIMATION: NO OBJECTIVE PRIOR DATA

$$n = \frac{(z_{1-\alpha} - z_{1-\beta})^2 \sigma^2}{(\overline{X} - \mu)^2}$$

Critical value two-tailed test: $z_{1-5\%} = 1.960$, $z_{1-\beta(\beta=20\%)} = 0.842$

SAMPLE SIZE ESTIMATION: TEST OF TWO MEANS (normal distribution)

$$n_1 = n_2 = \frac{(z_{1-\alpha/2} - z_{1-\beta})^2 (\sigma_1^2 + \sigma_2^2)^2}{d^2}$$

SAMPLE SIZE ESTIMATION: MEAN (non normal distribution)

 $n\!=\!\frac{\sigma^2}{\alpha\!\cdot\!k^2}$, where k = the difference you want to detect

between the sample mean and population mean (a clinical choice)

SAMPLE SIZE ESTIMATION: ON RATES

Central proportion (is not near 0 or 1):

$$n = \left[\frac{z_{1-\alpha/2}\sqrt{\pi \cdot (1-\pi)} + z_{1-\beta}\sqrt{p \cdot (1-p)}}{p-\pi}\right]^2. \text{ where } \pi = \text{theoretica}$$

proportion; p = desired proportion Extreme proportion (is near 0 or 1):

$$n = \left(\frac{z_{1-\alpha/2}\sqrt{\pi} + z_{1-\beta}\sqrt{p}}{p-\pi}\right)^2$$