Quantity of information:

1 octet (byte) (symbol o / B) $=8$ bits

Symbol	Binary	Byte
kbyte (kilobit) - kB	2^{10}	1024
Mbyte (megabit) - MB	2^{20}	1048576
Gbyte (gigabit) - GB	2^{30}	1073741824
Tbyte (terabit) - TB	2^{40}	1099511627776

DESCRIPTIVE STATISTICS

Median:

| $n=$ odd |
| :--- | :--- |
| $M e=x_{n+1}^{2}$ |\(\quad \begin{aligned} \& n=even

\& $$
\begin{array}{l}x_{n}+x_{n} \\
2\end{array}
$$\end{aligned}\)

Mean:
$\mu=\frac{\sum_{i=1}^{n} X_{i}}{N} \quad \bar{X}=\frac{\sum_{i=1}^{n} X_{i}}{n}$
Skewness Kurtosis
$M_{3}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{3}}{n}$

$$
\alpha_{4}=\frac{\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{4}}{S^{4}}-3
$$

Amplitude (Range): $R=X_{\text {max }}-X_{\text {min }}$
Centralvalue $=\frac{X_{\text {min }}+X_{\text {max }}}{2}$

Means of deviations:

$\left.R_{\bar{x}}=\frac{\sum_{i=1}^{n}\left|X_{i}-\bar{X}\right|}{n} \right\rvert\, \quad R_{M e}=\frac{\sum_{i=1}^{n}\left|X_{i}-M e\right|}{n}$

Variance:

Population Sample
$\left.\sigma^{2}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{N} \right\rvert\, s^{2}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}$
Standard deviation:
$s=\sqrt{s^{2}}=\sqrt{\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}}$
Standard error (ES): Coefficient of variance (CV):
$\mathrm{ES}=\frac{\mathrm{s}}{\sqrt{\mathrm{n}}} \quad \mathrm{CV}=\frac{\mathrm{s}}{\bar{X}}$

PROBABILITIES

$\operatorname{Pr}(A)=($ number of favourable cases)/(number of possible cases)
Sensibility: $\mathrm{Se}=\operatorname{Pr}(\mathrm{B} \mid \mathrm{A})$
where $\operatorname{Pr}(B)=$ probability of a positive test; $\operatorname{Pr}($ non $B)=$ probability of a no positive test; $\operatorname{Pr}(\mathrm{A})=$ probability of existence of a certain disease; $\operatorname{Pr}($ nonA $)=$ probability of non existence of a certain disease.
Specificity: $\mathrm{Sp}=\operatorname{Pr}($ non $B \mid$ nonA $)$
Positive predictive value: $\operatorname{PPV}=\operatorname{Pr}(\mathrm{A} \mid \mathrm{B})$
Negative predictive value: $N P V=\operatorname{Pr}($ non $A \mid n o n B)$
False positive rate: $F P R=\operatorname{Pr}(B \mid$ non $A)$
False negative rate: $\mathrm{FNR}=\operatorname{Pr}($ nonA $\mid B)$
Addition rules: $\operatorname{Pr}(A \cup B)=\operatorname{Pr}(A)+\operatorname{Pr}(B)-\operatorname{Pr}(A \cap B)$
Addition rule for mutually exclusive events:
$\operatorname{Pr}(A \cup B)=\operatorname{Pr}(A)+\operatorname{Pr}(B)$
Multiplication rules: $\operatorname{Pr}(A \cap B)=\operatorname{Pr}(A) \cdot \operatorname{Pr}(B \mid A)$
Multiplication rule for independent events:
$\operatorname{Pr}(\mathrm{A} \cap \mathrm{B})=\operatorname{Pr}(\mathrm{A}) \cdot \operatorname{Pr}(\mathrm{B})$
BAYES Formula:
$\operatorname{Pr}(A \mid B)=\frac{\operatorname{Pr}(B \mid A) \cdot \operatorname{Pr}(A)}{\operatorname{Pr}(B \mid A) \cdot \operatorname{Pr}(A)+\operatorname{Pr}(B \mid \text { non } A) \cdot \operatorname{Pr}(\text { non } A)}$

RANDOM VARIABLE

Mean (expected value):

$$
\mathrm{M}(\mathrm{X})=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{X}_{\mathrm{i}} \cdot \operatorname{Pr}\left(\mathrm{X}_{\mathrm{i}}\right)
$$

Variance:

Standard
deviation

$$
\begin{aligned}
& V(X)=\sum_{i=1}^{n}\left(X_{i}-M(X)\right)^{2} \cdot \operatorname{Pr}\left(X_{i}\right) \\
& \sigma(X)=\sqrt{V(X)}=\sqrt{\sum_{i=1}^{n}\left(X_{i}-M(X)\right)^{2} \cdot \operatorname{Pr}\left(X_{i}\right)}
\end{aligned}
$$

BINOMIAL RANDOM VARIABLES

Binomial DISTRIBUTION:
$\operatorname{Pr}(X=k)=C_{n}^{k} p^{k} q^{n-k}$ where $C_{n}^{k}=\frac{n!}{k!\cdot(n-k)!}$
Mean: $M(X)=n \cdot p$
Variance: $V(X)=n \cdot p \cdot q$
Standard deviation: $\sigma(X)=\sqrt{V(X)}=\sqrt{n \cdot p \cdot q}$

POISSON RANDOM VARIABLE
$X:\binom{k}{e^{-\theta} \cdot \frac{\theta^{k}}{k!}} \quad \operatorname{Pr}(X=k)=\frac{e^{-\theta} \cdot \theta^{k}}{k!}$
$e=2.718281828 ; \theta=n \cdot p$ ($n=$ sample size, $p=$ probability of the apparition of an event).

CONFIDENCE LEVELS

Mean:

Frequency:

$$
\begin{aligned}
& {\left[\bar{X}-Z_{\alpha} \frac{s}{\sqrt{n}}, \bar{X}+Z_{\alpha} \frac{s}{\sqrt{n}}\right]} \\
& {\left[f-Z_{\alpha} \sqrt{\frac{f \cdot(1-f)}{n}} ; f+Z_{\alpha} \sqrt{\frac{f \cdot(1-f)}{n}}\right]}
\end{aligned}
$$

Frequency:

PEARSON CORRELATION COEFICIENT
$r=\frac{\sum(X-\bar{X})(Y-\bar{Y})}{\sqrt{\sum(X-\bar{X})^{2} \sum(Y-\bar{Y})^{2}}}$

CHI-SQUARE TEST (χ^{2}): $\chi^{2}=\sum_{\mathrm{i}=1}^{\text {r.c. }} \frac{\left(\mathrm{f}_{\mathrm{i}}^{0}-\mathrm{f}_{\mathrm{t}}^{\mathrm{t}}\right)^{2}}{\mathrm{f}_{\mathrm{i}}^{\mathrm{t}}}$
where $\chi^{2}=\chi^{2}$ test statistic; $f_{i}^{0}=$ observed frequency; $f_{i}^{t}=$ theoretical frequency.
Critical region for $\alpha=0.05$ is [3.84, ∞).

- If $\chi^{2} \in[3.84 ; \infty) H_{0}$ is not accepted with a type I risk of error (α).
- If $\chi^{2} \notin[3.84 ; \infty) \mathrm{H}_{0}$ is accepted with a type II risk of error (β).

Z TEST FOR PROPORTIONS (comparison of an observed frequency with a theoretical frequency)
$z=\frac{f-p}{\sqrt{\frac{p(1-p)}{n}}}$ where $p=$ theoretical frequency (population frequency); $f=$ observed frequency, $n=$ sample size.
Z TEST FOR PROPORTIONS (testing the equality of two proportions)
$z=\frac{\left(p_{1}-p_{2}\right)}{\sqrt{p \cdot(1-p) \cdot\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}}, p=\frac{p_{1} n_{1}+p_{2} n_{2}}{n_{1}+n_{2}}$
where $p_{1}=$ frequency for $1^{\text {st }}$ sample; $n_{1}=$ sample size of $1^{\text {st }}$ sample; $p_{2}=$ frequency of $2^{\text {nd }}$ sample; $n_{2}=$ sample size for $2^{\text {nd }}$ sample.
Z TEST FOR COMPARING OF A SAMPLE MEAN WITH A POPULATION MEAN (equal variances)
$Z=\frac{\bar{X}-\mu}{\sigma} \quad$ where $\mu=$ population mean; $\bar{X}=$ sample mean; σ $=\frac{\bar{\alpha}}{\frac{\sigma}{\sqrt{n}}}$ = population standard deviation; $\mathrm{n}=$ $\frac{\sqrt{n}}{\sqrt{n}}$ sample size

Critical region for $\alpha=0.05$ (two-tailed test): ($-\infty,-1.96$] \cup $[1.96, \infty)$

RISKS AND ODDS ON $\mathbf{2 \times 2}$ CONTINGENCY TABLE

	Disease +	Disease -	Total
Test +	AP	FP	$=A P+F P$
Test -	FN	AN	$=F N+A N$
Total	$=A P+F N$	$=F P+A N$	$=A P+F P+F N+A N=n$

Name	Formula
False positive rate	$=\mathrm{FP} /(\mathrm{FP}+\mathrm{AN})$
False negative rate	$=\mathrm{FN} /(\mathrm{FN}+\mathrm{AP})$
Sensibility	$=\mathrm{AP} /(\mathrm{AP}+\mathrm{FN})$
Specificity	$=\mathrm{AN} /(\mathrm{AN}+\mathrm{FP})$
Accuracy	$=(\mathrm{AP}+\mathrm{AN}) / \mathrm{n}$
Predictive positive value	$=\mathrm{AP} /(\mathrm{AP}+\mathrm{FP})$
Predictive negative value	$=\mathrm{AN} /(\mathrm{AN}+\mathrm{FN})$
Relative risk	$=\mathrm{AP}(\mathrm{FP}+\mathrm{AN}) / \mathrm{FN}(\mathrm{AP}+\mathrm{FP})$
Odds ratio	$=(\mathrm{AP} \cdot \mathrm{AN}) /(\mathrm{FN} \cdot \mathrm{FP})$
Attributable risk	$=\mathrm{AP} /(\mathrm{AP}+\mathrm{FP})-\mathrm{FN} /(\mathrm{FN}+\mathrm{AN})$

STUDENT (T) TEST FOR COMPARING A MEAN WITH A KNOWN MEAN (unknown variances)
$\mathrm{t}=\frac{\overline{\mathrm{x}}-\mu}{\mathrm{s}} \quad \begin{aligned} & \text { where } \mu=\text { population mean; } \overline{\mathrm{X}}=\text { sample mean; } \mathrm{s}= \\ & \text { sample standard deviation; } \mathrm{n}=\text { sample size } .\end{aligned}$

- Degree of freedom (df): $\mathrm{df}=\mathrm{n}-1$
- Critical region for $\alpha=0.05$ (two-tailed test): ($-\infty,-t_{n-1,0.025}$] $\cup\left[t_{n-1,0.025}, \infty\right)$

STUDENT (T) TEST FOR COMPARING TWO MEANS (equal variances)
$t=\frac{\bar{X}_{1}-\bar{X}_{2}}{s \cdot \sqrt{\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}}$, where $s=\sqrt{\frac{\left(n_{1}-1\right) \cdot s_{1}^{2}+\left(n_{2}-1\right) \cdot s_{2}^{2}}{n_{1}+n_{2}-2}}$
$\bar{X}_{1}=$ mean of $1^{\text {st }}$ sample; $n_{1}=$ sample size of $1^{\text {st }}$ sample; $\mathrm{s}_{1}{ }^{2}=$ variance of $1^{\text {st }}$ sample; $\bar{X}_{2}=$ mean of $2^{\text {nd }}$ sample; $n_{2}=$ sample size of $2^{\text {nd }}$ sample; $s_{2}{ }^{2}=$ variance of $2^{\text {nd }}$ sample

STUDENT (T) TEST FOR COMPARING TWO PAIRED MEANS

$\mathrm{t}=\frac{\overline{\mathrm{d}}}{\frac{\mathrm{s}}{\sqrt{\mathrm{n}}}}$, where $\overline{\mathrm{d}}=\frac{\mathrm{d}_{1}+\mathrm{d}_{2}+\ldots \mathrm{d}_{\mathrm{n}}}{\mathrm{n}}$
$s=$ standard deviation of differences; $n=$ sample size

Z TEST FOR COMPARIND THE MEANS OF TWO POPULATIONS (KNOWN AND UNEQUAL VARIANCES)
$\mathrm{z}=\frac{\overline{\mathrm{X}}_{1}-\overline{\mathrm{X}}_{2}}{\sqrt{\frac{\mathrm{~s}_{1}^{2}}{\mathrm{n}_{1}}+\frac{\mathrm{s}_{2}^{2}}{\mathrm{n}_{2}}}}$
where \bar{X}_{1} mean of $1^{\text {st }}$ sample; $n_{1}=$ sample size of first sample; $s_{1}{ }^{2}=$ variance of first sample; $\bar{X}_{2}=$ mean of $2^{\text {nd }}$ sample; $n_{2}=$ sample size of $2^{\text {nd }}$ sample; $s_{2}{ }^{2}=$ variance of $2^{\text {nd }}$ sample.

SAMPLE SIZE ESTIMATION: MEAN TESTING (normal distribution) / SAMPLE SIZE ESTIMATION: NO OBJECTIVE PRIOR DATA
$n=\frac{\left(z_{1-\alpha}-z_{1-\beta}\right)^{2} \sigma^{2}}{(\bar{X}-\mu)^{2}}$
Critical value two-tailed test: $z_{1-5 \%}=1.960, z_{1-\beta(\beta=20 \%)}=0.842$
SAMPLE SIZE ESTIMATION: TEST OF TWO MEANS (normal distribution)
$\mathrm{n}_{1}=\mathrm{n}_{2}=\frac{\left(\mathrm{z}_{1-\alpha / 2}-\mathrm{z}_{1-\beta}\right)^{2}\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right)^{2}}{\mathrm{~d}^{2}}$
SAMPLE SIZE ESTIMATION: MEAN (non normal distribution) $\mathrm{n}=\frac{\sigma^{2}}{\alpha \cdot \mathrm{k}^{2}}$, where $\mathrm{k}=$ the difference you want to detect between the sample mean and population mean (a clinical choice)

SAMPLE SIZE ESTIMATION: ON RATES

Central proportion (is not near 0 or 1):
$n=\left[\frac{z_{1-\alpha / 2} \sqrt{\pi \cdot(1-\pi)}+z_{1-\beta} \sqrt{p \cdot(1-p)}}{p-\pi}\right]^{2}$. where $\pi=$ theoretical
proportion; $p=$ desired proportion
Extreme proportion (is near 0 or 1):
$n=\left(\frac{z_{1-\alpha / 2} \sqrt{\pi}+z_{1-\beta} \sqrt{p}}{p-\pi}\right)^{2}$

