PROBABILITY DISTRIBUTIONS

Sorana D. Bolboacă

Objectives

- Random variables
- Types of probability distributions (density function)
- Discrete probability distributions
- Continuous probability distributions

RANDOM VARIABLE

- A random variable
- is a quantification of a probability model that allows to model random data
- Is a quantity that may take any value of a given range that cannot be predicted exactly but can be described in terms of their probability
- Discrete: generally assessed by counting
- Continuous: generally assessed by measurements

RANDOM VARIABLE

- When throwing a die with 6 faces, let X be the random variable defined by:

$$
\mathrm{X}=\text { the square of the scores shown on the die }
$$

What is the expectation of X ?

Solution:

- $S=\left\{1,2^{2}, 3^{2}, 4^{2}, 5^{2}, 6^{2}\right\}=\{1,4,9,16,25,36\}$
- Each face has a probability of $1 / 6$ of occurring, so:
$\mathrm{E}(\mathrm{X})=1^{*} 1 / 6+4^{*} 1 / 6+6^{*} 1 / 6+16^{*} 1 / 6+25^{*} 1 / 6+36^{*} 1 / 6=91^{*} 1 / 6$

Random Variables

- Outcome of an experiment \rightarrow a quantitative or a qualitative data
- A random variable is a function that assign a unique numerical value to each outcome of an experiment along with an associated probability.
- Discrete random variable corresponds to an experiment that has a finite or countable number of outcomes.
- A continuous random variable is a random variable for which the set of possible outcomes is continuous

Probability Distribution

Discrete

- The probabilities associated with each specific value

Continuous

- The probabilities associated with a range of values

DISCRETE PROBABILITY DISTRIBUTIONS

Event space

- Suppose that we toss 3 coins.
- Let X be the number of "heads" appearing
- X is a random variable taking one of the following values $\{0,1,2,3\}$

Event space

- Let us suppose that we have an urn with black and white balls. We win $\$ 1$ for every white and lose $\$ 1$ for every black. Let $\mathrm{X}=$ total winnings.
- X is a random variable that can take one of the following values $\{-2,0,2\}$

Discrete Probability Distributions

- The probability of X distribution: list of values from the events space and associated probabilities
- Let X be the outcome of tossing a die
- X is a random variable that can take one of the following values $\{1,2$, $3,4,5,6\}$

X_{i}	$\operatorname{Pr}\left(\mathrm{X}_{\mathrm{i}}\right)$
1	$1 / 6$
2	$1 / 6$
3	$1 / 6$
4	$1 / 6$
5	$1 / 6$
6	$1 / 6$

Discrete Probability Distributions

- The probability of X lists the values in the events space and their associated probabilities

X_{i}	Pr_{i}
1	$1 / 6$
2	$1 / 6$
3	$1 / 6$
4	$1 / 6$
5	$1 / 6$
6	$1 / 6$

events space

Discrete Probability Distributions

- Let X be the number of "head" results by throwing twice two coins. What is the probability distribution?

X_{i}	$\operatorname{Pr}_{\mathrm{i}}$
0	$1 / 4$
1	$2 / 4$
2	$1 / 4$

Discrete Probability Distributions

- Probability Distribution: symbols

$$
\mathrm{X}:\left(\begin{array}{cccc}
\mathrm{X}_{1} & \mathrm{X}_{2} & \ldots & \mathrm{X}_{\mathrm{n}} \\
\operatorname{Pr}\left(\mathrm{X}_{1}\right) & \operatorname{Pr}\left(\mathrm{X}_{2}\right) & \ldots & \operatorname{Pr}\left(\mathrm{X}_{\mathrm{n}}\right)
\end{array}\right)
$$

- Property: the probabilities that appear in distribution of a finite random variable verify the formula:

$$
\sum_{i=1}^{n} \operatorname{Pr}\left(X_{i}\right)=1
$$

Discrete Probability Distributions

- The mean of discrete probability distribution (called also expected value) is give by the formula:

$$
\mathrm{M}(\mathrm{X})=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{X}_{\mathrm{i}} \cdot \operatorname{Pr}\left(\mathrm{X}_{\mathrm{i}}\right)
$$

- Represents the weighted average of possible values, each value being weighted by its probability of occurrence.

Discrete Probability Distributions

Example:

- Let X be a random variable represented by the number of otitis episodes in the first two years of life in a community. This random variable has the following distribution:

$$
X:\left(\begin{array}{ccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 \\
0.129 & 0.264 & 0.271 & 0.185 & 0.095 & 0.039 & 0.017
\end{array}\right)
$$

- What is the expected number (average) of episodes of otitis during the first two years of life?

Discrete Probability Distributions

- What is the expected number (average) of episodes of otitis during the first two years of life?

$$
\mathrm{X}:\left(\begin{array}{ccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 \\
0.129 & 0.264 & 0.271 & 0.185 & 0.095 & 0.039 & 0.017
\end{array}\right)
$$

- $\mathrm{M}(\mathrm{X})=0 \cdot 0.129+1 \cdot 0.264+2 \cdot 0.271+3 \cdot 0.185+4 \cdot 0.095$ $+5 \cdot 0.039+6 \cdot 0.017$
- $\mathrm{M}(\mathrm{X})=0+0.264+0.542+0.555+0.38+0.195+0.102$
- $M(X)=2.038$

Discrete Probability Distributions

- Variance: is a weighted average of the squared deviations in X

$$
\mathrm{V}(\mathrm{X})=\sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{X}_{\mathrm{i}}-\mathrm{M}(\mathrm{X})\right)^{2} \cdot \operatorname{Pr}\left(\mathrm{X}_{\mathrm{i}}\right)
$$

- Standard deviation:

$$
\sigma(\mathrm{X})=\sqrt{\mathrm{V}(\mathrm{X})}=\sqrt{\sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{X}_{\mathrm{i}}-\mathrm{M}(\mathrm{X})\right)^{2} \cdot \operatorname{Pr}\left(\mathrm{X}_{\mathrm{i}}\right)}
$$

Discrete Probability Distributions

X_{i}	$\operatorname{Pr}\left(\mathrm{X}_{\mathrm{i}}\right)$	$\mathrm{X}_{\mathrm{i}} * \operatorname{Pr}\left(\mathrm{X}_{\mathrm{i}}\right)$	$\mathrm{X}_{\mathrm{i}}-\mathrm{M}(\mathrm{X})$	$\left(\mathrm{X}_{\mathrm{i}}-\mathrm{M}(\mathrm{X})\right)^{2}$	$\left(\mathrm{X}_{\mathrm{i}}-\mathrm{M}(\mathrm{X})\right)^{2 *} \operatorname{Pr}\left(\mathrm{X}_{\mathrm{i}}\right)$
0	0.129	0	-2.038	4.153	0.536
1	0.264	0.264	-1.038	1.077	0.284
2	0.271	0.542	-0.038	0.001	0.000
3	0.185	0.555	0.962	0.925	0.171
4	0.095	0.38	1.962	3.849	0.366
5	0.039	0.195	2.962	8.773	0.342
6	0.017	0.102	3.962	15.697	0.267

Discrete Probability Distributions

 By Examples- Bernoulli: head versus tail (two possible outcomes)
- Binomial: number of 'head' obtained by throwing a coin of n times
- Poisson: number of patients consulted in a emergency office in one day

BERNOULLI DISTRIBUTION

- A random variable whose response are dichotomous is called a Bernoulli random variable
- The experiment has just two possible outcomes (success and failure - dichotomial variable):
- Gender: boy or girl
- Results of a test: positive or negative
- Probability of success = p
- Probability of failure = 1-p

\mathbf{X}	$\mathbf{1}$	$\mathbf{0}$
$\operatorname{Pr}(\mathrm{X}=\mathrm{x})$	p	$1-\mathrm{p}$

BERNOULLI DISTRIBUTION

- Mean of X:

$$
M(X)=1 \cdot p+0 \cdot(1-p)
$$

- Variance of X:

$$
V(X)=p \cdot(1-p)
$$

BInOMIAL DISTRIBUTION

- An experiment is given by repeating a test of n times ($n=$ known natural number).
- The possible outcomes of each attempt are two events called success and failure
- Let noted with p the probability of success and with q the probability of failure ($q=1-p$)
- The n repeated tests are independent

BINOMIAL DISTRIBUTION

- In a binomial experiment:
- It consists of a fixed number n of identical experiments
- There are only two possible outcomes in each experiments, denoted by S (success) and F (failure)
- The experiments are independent with the same probability of S (denoted p)
- ${ }_{4} \mathrm{C}_{2}=4$ choose 2 (combination choosing 2 from 4)

BINOMIAL DISTRIBUTION

- The number of successes X obtained by performing the test n times is a random variable of n and p parameters and is noted as $\operatorname{Bi}(\mathrm{n}, \mathrm{p})$
- The random variable X can take the following values: $0,1,2, \ldots n$
- Probability that X to be equal with a value k is given by the formula:

$$
\operatorname{Pr}(X=k)=C_{n}^{k} p^{k} q^{n-k}
$$

where:

$$
\mathrm{C}_{\mathrm{n}}^{\mathrm{k}}=\frac{\mathrm{n}!}{\mathrm{k}!\cdot(\mathrm{n}-\mathrm{k})!}
$$

BINOMIAL DISTRIBUTION

$$
\begin{array}{ll}
\hline \text { Mean } & \mathbf{M}(\mathbf{X})=\mathbf{n} \cdot \mathbf{p} \\
\hline \text { Variance } & V(X)=n \cdot p \cdot q \\
\text { Standard deviation } & \sigma(X)=\sqrt{(n \cdot p} \cdot q)
\end{array}
$$

BINOMIAL DISTRIBUTION

- Suppose that 90% of adults with joint pain report symptomatic relief with a specific medication. If the medication is given to 10 new patients with joint pain, what is the probability that it is effective in exactly 7 subjects?
- Assumptions of the binomial distribution model?
- The outcome is pain relief (yes or no), and we will consider that the pain relief is a success
- The probability of success for each subject is 0.9 ($\mathrm{p}=0.9$)
- The final assumption is that the subjects are independent, and it is reasonable to assume that this is true.
- $\operatorname{Pr}(\mathrm{X}=7)={ }_{10} \mathrm{C}_{7} \cdot 0.9^{7} \cdot(1-0.9)^{10-7}=0.0574 \rightarrow$ there is a 5.74% chance that exactly 7 of 10 patients will report pain relief when the probability that any one reports relief is 90%.

BInOMIAL DISTRIBUTION

- What is the probability to have 2 boys in a family with 5 children if the probability to have a baby-boy for each birth is equal to 0.47 and if the sex of children successive born in the family is considered an independent random variable?
- $\mathrm{p}=0.47$
- $\mathrm{q}=1-0.47=0.53$
- $\mathrm{n}=5$
- $\mathrm{k}=2$
- $\operatorname{Pr}(X=2)=10 \cdot 0.47^{2} \cdot 0.53^{3}$
- $\operatorname{Pr}(\mathrm{X}=2)=0.33$

$$
\begin{aligned}
& \operatorname{Pr}(X=k)=C_{n}^{k} p^{k} q^{n-k} \\
& C_{5}^{2}=\frac{5!}{2!(5-2)!}=\frac{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{2 \cdot 1 \cdot(3 \cdot 2 \cdot 1)}=\frac{120}{12}=10
\end{aligned}
$$

PoISSON DISTRIBUTION

- Random Poisson variable take a countable infinity of values ($0,1,2, \ldots, \mathrm{k}, \ldots$) that is the number of achievements of an event within a given range of time or place
- number of entries per year in a given hospital
- white blood cells on smear
- number of decays of a radioactive substance in a given time T

PoISSON DISTRIBUTION

- POISSON random variable:
- Is characterized by theoretical parameter θ (expected average number of achievement for a given event in a given range)
- Symbol: $\operatorname{Po}(\theta)$
- Poisson Distribution:

$$
\begin{array}{r}
X:\binom{k}{e^{-\theta} \cdot \frac{\theta^{k}}{k!}} \\
\operatorname{Pr}(X=k)=\frac{e^{-\theta} \cdot \theta^{k}}{k!}
\end{array}
$$

- Mean of expected values: $M(X)=\theta$
- Variance: $\mathrm{V}(\mathrm{X})=\theta$

PoISSON DISTRIBUTION

- The mortality rate for specific viral pathology is 7 per 1000 cases. What is the probability that in a group of 400 people this pathology to cause 5 deaths?
- $\mathrm{n}=400$
- $\mathrm{p}=7 / 1000=0.007$
- $\theta=n \cdot p=400 \cdot 0.007=2.8$
- $e=2.718281828=2.72$
$\operatorname{Pr}(\mathrm{X}=5)=\left(2.72^{-2.8} \cdot 2.8^{5}\right) /(5 \cdot 4 \cdot 3 \cdot 2 \cdot 1)=10.45 / 120$ $\operatorname{Pr}(X=5)=0.09$

Continuous Probability

 DISTRIBUTIONS- Uniform distribution and its standard form
- Normal distribution and its standard form
- Does your data follow a "bell shaped" pattern? (mean \sim median \sim mode)

NORMAL DISTRIBUTION

- Also known Gaussian distribution
- Characteristics of normal distribution:
- $\sim 68 \%$ of values fall between mean and one standard deviation (in either direction)
- ~ 95\% of values fall between mean and two standard deviations (in either direction)
- ~ 99.9\% of values fall between mean and three standard deviations (in either direction)

NORMAL DISTRIBUTION

- When we have a normal distributed variable and we know the population mean (μ) and standard deviation (σ), we can compute the probability of particular values using the following formula:
- $\operatorname{Pr}(\mathrm{X})=1 / \sigma \sqrt{2} \pi \cdot \mathrm{e}^{\wedge}\left(-(\mathrm{X}-\mu)^{\wedge} 2 /\left(2 \sigma^{\wedge} 2\right)\right)$

The mean $(\mu=29)$ is in the center of the distribution, and the horizontal axis is scaled in increments of the standard deviation $(\sigma=6)$

NORMAL DISTRIBUTION

- Normal distribution:
- Gaussian distribution
- Symmetric
- Not skewed
- Unimodal

- Described by two parameters:
- Probability density function:

$$
\phi(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}
$$

- $\mu \& \sigma$ are parameters
- $\mu=$ mean
- $\sigma=$ standard deviation
- $\pi, \mathrm{e}=$ constants

Standard Normal Distribution

- The standard normal distribution is a normal distribution with a mean of zero and standard deviation of 1.

SUMMARY

- Random variables could be discrete or continuous.
- For random variables we have:
- Discrete probability distributions
- Continuous probability distribution
- It is possible to compute the expected values (means), variations and standard deviation for discrete and random variables.

SUMMARY

- Normal distribution
- can be used to describe a variety of variables
- Is bell-shaped, unimodal, symmetric, and continuous; its mean, median, and mode are equal
- Its standard form has a mean of 0 and a standard deviation of 1
- Can be used to approximate other distributions to simplify the analysis of data

Problems

1. If X is binomially distributed with 6 experiments and a probability of success equal to $1 / 4$ at each experiment, what is the probability of:

- Exactly 4 successes
- At least on success

2. When an unbiased coin is tossed eight times what is the probability of obtaining:

- Less than 4 heads
- More than 5 heads

Problems

3. The serum level of 1,25 dihydroxyvitamin D in adolescent girls is believed to be normally distribution with mean $65 \mathrm{pg} / \mathrm{ml}$ and standard deviation $12.5 \mathrm{pg} / \mathrm{ml}$.

- What percent of adolescent girls will have a level higher than $65 \mathrm{pg} / \mathrm{ml}$?
- What percent are lower than $65 \mathrm{pg} / \mathrm{ml}$?
- What percent are between $40 \mathrm{pg} / \mathrm{ml}$ and 90 $\mathrm{pg} / \mathrm{ml}$?

