POINT ESTIMATORS & CONFIDENCE INTERVALS

Sorana D. Bolboacă

OBJECTIVES

- Point estimators
- Confidence interval for mean
- Confidence interval for proportion

INFERENTIAL STATISTICS

- Inferential statistics = the process of making guesses about the truth on the population by examining a sample extracted from the population
- Sample statistics = summary measures calculated from data belonging to a sample (e.g. mean, proportion, ratio, correlation coefficient, etc.)
- Population parameter = true value in the population of interest
- Point estimation involves the use of sample data to calculate a single value (known as a statistic) which is to serve as a "best guess" or "best estimate" of an unknown (fixed or random) population parameter.

POINT ESTIMATOR

- Point estimation provide one value as an estimate of the population parameter (e.g. the sample mean is a point estimator for population mean)
 - We are interested in the mean of height of 10-years-old boys and girls in the Romania. It would be impossible to measure the height of all 10-years-old boys and girls height so we will investigate a random sample of 30 boys and a random sample of 30 girls of 10years-old. The sample mean for boys is 140 cm and for girls is 132 cm.
 - The sample mean of 140 cm is a point estimator of boys population mean
 - The sample mean of 132 cm is a point estimator of girls population mean

POINT ESTIMATOR VS. INTERVAL ESTIMATION

- Interval estimation: provide a range of values (an interval) that contain with a high probability the unknown parameter
- Confidence interval: the interval that contain an unknown parameter (such as the population mean) with certain degree of confidence
- It is recommended to estimate a theoretical parameter by using a range of value not a single value
 - It is called confidence interval
 - The estimated parameter belong to the confidence intervals with a high probability.

POINT ESTIMATOR VS. INTERVAL ESTIMATION

- Point estimator = one value obtained on a sample
 - How much uncertainty is associated with a point estimator of parameter?
- An interval provides more information about a population characteristics that does a point estimator → confidence interval

Width of confidence interval

INTERVAL ESTIMATION

An interval gives a range of values:

- Takes into consideration variation in sample statistics from sample to sample
- Based on observations from 1 sample
- Gives information about closeness to unknown population parameters
- Stated in terms of level of confidence. (Can never be 100% confident)
- The general formula for all confidence intervals is equal to:

INTERVAL ESTIMATION

Point Estimator ± (Critical Value)×(Standard Error)

Margin or error

- The margin of error, and hence the width of the interval, gets smaller the as the sample size increases.
- The margin of error, and hence the width of the interval, increases and decreases with the confidence.

INTERVAL ESTIMATION

- Significance level $\alpha = 5\% \rightarrow 95\%$ confidence interval (CI)
- $CI = (1 \alpha) = 0.95$
- Interpretation:
 - If all possible samples of size *n* are extracted from the population and their means and intervals are estimated, 95% of all the intervals will include the true value of the unknown parameter
 - A specific interval either will contain or will not contain the true parameter (due to the 5% risk)

q

CONFIDENCE INTERVALS

Provides:

- A plausible range of values for a population parameter.
- □ The precision of an point estimator.
 - When sampling variability is high, the confidence interval will be wide to reflect the uncertainty of the observation.
- Statistical significance.
 - If the 95% CI does not cross the null value, it is significant at 0.05.

CONFIDENCE INTERVALS

- Are calculated taking into consideration:
 - The sample or population size
 - The type of investigated variable (qualitative OR quantitative)
- Formula of calculus comprised two parts:
 - One estimator of the quality of sample based on which the population estimator was computed (standard error)
 - Standard error: is a measure of how good our best guess is.
 - Standard error: the bigger the sample, the smaller the standard error.
 - **Goldstate** Standard error: is always smaller than the standard deviation
 - Degree of confidence (standard values)

CONFIDENCE INTERVALS FOR MEANS

Assumptions:

- **D** Population standard deviation (σ) is known
- Population is normally distributed
- □ If population is not normal, use large sample

$$\left[\overline{X} - Z_{\alpha} \frac{\sigma}{\sqrt{n}}; \overline{X} + Z_{\alpha} \frac{\sigma}{\sqrt{n}}\right]$$

where Z is the normal distribution's critical value for a probability of $\alpha/2$ in each tail

CONFIDENCE INTERVALS FOR MEANS

Under the normality assumption:

$$P\left(\bar{X} - Z_{\alpha/2}\frac{\sigma}{\sqrt{n}} \le \mu \le \bar{X} + Z_{\alpha/2}\frac{\sigma}{\sqrt{n}}\right) = 0.95$$

 95%CI for population mean when standard deviation of the mean is known is:

$$\left[\overline{X} - 1.96 \frac{\sigma}{\sqrt{n}}, \overline{X} + 1.96 \frac{\sigma}{\sqrt{n}} \right]$$

 In repeated sampling from a normally distributed population with an known standard deviation, 100*(1-α) percent of all intervals of the form above will in the long runs cover the population mean

Consider a 95% confidence interval:

• $1 - \alpha = 0.95 \& \alpha = 0.05 \& \alpha/2 = 0.025$

- 15

CONFIDENCE INTERVALS FOR MEANS

- Consider the distribution of serum cholesterol levels for all female Romanian who are hypertensive and overweight. This population has an unknown mean (μ) and a standard deviation (σ) of 30 mg/dl. We extracted from this population a random sample of 20 subjects and we found a mean of serum cholesterol level (X̄) equal with 220 mg/dl.
 - □ \overline{X} = 220 mg/dl is a point estimator of the unknown mean serum cholesterol level (µ) in the population
 - Because of the sampling variability, it is important to construct the interval able to take into account the sampling variability:

95%CI =
$$\left(220 - 1.96\frac{30}{\sqrt{20}}, 220 + 1.96\frac{30}{\sqrt{20}}\right) = (207, 233)$$

99%CI = $\left(220 - 2.58\frac{30}{\sqrt{20}}, 220 + 2.58\frac{30}{\sqrt{20}}\right) = (203, 237)$
Length = 237-203 = 34

CONFIDENCE INTERVAL BY EXAMPLES

Let us suppose that there are 65 country and imported beer brands in the Romanian market. We have collected 2 different samples of 20 brands and gathered information about the price of a 6-pack, the calories, and the percent of alcohol content for each brand. Further, we know the population standard deviation (σ) of price is \in 1.15. Here are the samples' information:

> Sample A: m_A = €4.90, s_A = €1.09 Sample B: m_B = €5.20, s_B = €0.98

Provide 95% confidence interval **estimates of population mean price** using the two samples.

CONFIDENCE INTERVAL BY EXAMPLES

- Interpretation of the results from
 - Sample A: We are 95% confident that the true mean price is between €4.47 and €5.33
 - Sample B: We are 95% confident that the true mean price is between \$4.82 and \$5.58
- After the fact, I am informing you know that the population mean was €4.50. Which one of the results hold?
 - Although the true mean may or may not be in this interval, 95% of intervals formed in this manner will contain the true mean.

CONFIDENCE INTERVALS FOR MEANS

 Unknown population mean (μ) & unknown population standard deviation (σ): student t-distribution with n-1 degree of freedom will be used

$$P\left(\overline{X} - t_{\alpha/2}\frac{s}{\sqrt{n}} \le \mu \le \overline{X} + t_{\alpha/2}\frac{s}{\sqrt{n}}\right) = 0.95$$

 A sample of 20 female students gave a mean weight of 60kg and a standard deviation of 8 kg. Assuming normality, find the 90, 95, and 99 percent confidence intervals for the population mean weight.

$$90\%CI = \left[60 - 2.09\frac{8}{\sqrt{20}}, 60 + 2.09\frac{8}{\sqrt{20}}\right] = [56.91, 63.09]$$
$$95\%CI = \left[60 - 2.09\frac{8}{\sqrt{20}}, 60 + 2.09\frac{8}{\sqrt{20}}\right] = [56.26, 63.74]$$
$$99\%CI = \left[60 - 2.09\frac{8}{\sqrt{20}}, 60 + 2.09\frac{8}{\sqrt{20}}\right] = [54.88, 65.12]$$

CONFIDENCE INTERVALS FOR MEANS DIFFERENCE

CONFIDENCE INTERVALS FOR MEANS DIFFERENCE

$$(\bar{X}_1 - \bar{X}_1) \pm t_{df} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

$$df = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_{12}}\right)^2}{\frac{1}{n_1 - 1}\left(\frac{s_1^2}{n_1}\right)^2 + \frac{1}{n_2 - 1}\left(\frac{s_2^2}{n_2}\right)^2}$$

Group 1	7	7	8	8	8	6	9	6	5
Group 2	8	10	9	6	10	8	9	7	8

	Group 1	Group 2			
Mean	7.11	8.33			
S	1.27	1.32			
s ²	1.61	1.75			

df=15.97 for $\alpha = 0.05 \rightarrow t_{15.97} = 2.13$ $(7.11 - 8.33) \pm 2.13\sqrt{0.18 + 0.19}$ $-1.22 \pm 2.13^{*}0.61$ $-1.22 \pm 1.30 \rightarrow [-2.52, 0.08]$

CONFIDENCE INTERVALS

- Interpretation of CI for difference between two means
 - If 0 is contains by the confidence intervals, there is no significant difference between means.
 - If 0 is NOT contains by the confidence intervals, there is a significant difference between means.

COMPARING MEANS USING CONFIDENCE INTERVALS

http://www.biomedcentral.com/content/pdf/1471-2458-12-1013.pdf

Table 1 Living conditions of the MS-MV and the immigrant population (CASEN survey 2006)

	IMMIGRAN total sample, population (1 observations)	T POPULATION 1% n = 154 431 weighted .877 real	MS-MV GROUP 0.67% total sample, n = 108 599 weighted population (1477 real observations)			
	% or mean	95% CI	% or mean	95% CI		
DEMOGRAPHICS						
Mean age**	X=33.41	31.81-35.00	X = 26.13	23.41-28.26		
Age categories:						
<16 years old**	13.60	11.29-16.28	45.25	39.53-51.10		
16-65 years old**	79.08	75.92-81.93	47.26	41.64-52.94		
>65 years old	7.32	5.33-9.97	7.49	5.31-10.46		
Sex (female = 1)	45.21	41.74-48.72	51.27	47.99-55.41		
Marital status:	•		•	•		
Single**	45.81	42.06-49.62	64.30	59.36-68.95		
Married**	45.49	41.66-49.36	29.39	25.09-34.10		

CONFIDENCE INTERVAL FOR FREQUENCY

• Could be computed if:

□ $n \times f > 10$, where n = sample size, f = frequency

$$\left[f - Z_{\alpha}\sqrt{\frac{f(1-f)}{n}}; f + Z_{\alpha}\sqrt{\frac{f(1-f)}{n}}\right]$$

CONFIDENCE INTERVAL FOR FREQUENCY

- We are interested in estimating the frequency of breast cancer in women between 50 and 54 years with positive family history. In a randomized trial involving 10,000 women with positive history of breast cancer were found 400 women diagnosed with breast cancer.
- What is the 95% confidence interval associated frequently observed?

•
$$f = 400/10000 = 0.04$$

 $\left[0.04 - 1.96 \sqrt{\frac{0.04 \cdot 0.96}{10000}}; 0.04 + 1.96 \sqrt{\frac{0.04 \cdot 0.96}{10000}} \right]$
• $\left[0.04 - 0.004; 0.04 + 0.004 \right]$
• $\left[0.036; 0.044 \right]$

CONFIDENCE INTERVALS FOR OTHER ESTIMATORS

http://www.biomedcentral.com/content/pdf/1471-2458-12-1013.pdf

 Table 3 Odds Ratio (OR) of presenting any disability and any chronic condition or cancer, adjusted by different sets of factors separately (CASEN survey 2006)

	ANY DISABILITY				ANY CHRONIC CONDITION OR CANCER			
	Intern immig	national grants	MS-MV		International immigrants		MS-MV	
	OR	95% CI	OR	95% CI	OR	95% CI	OR	95% CI
DEMOGRAPHICS	•	•	·	·		·	•	
Age	1.04*	1.02-1.06	1.04*	1.02- 1.06	1.05*	1.02-1.08	1.02*	1.01-1.04
Sex (female = 1)	0.56	0.25-1.25	0.39*	0.20- 0.75	2.78**	1.26-6.71	1.05	0.46-2.36

REMEMBER!

- Correct estimation of a population parameter is done with confidence intervals.
- Confidence intervals depend by the sample size and standard error.
- The confidence intervals is larger for:
 - High value of standard error
 - Small sample sizes