TeSTS OF ASSOCIATIONS Correlations \& Regressions

Sorana D. Bolboacă

OUTLINE \& OBJECTIVES

OUTLINE

- Correlation methods
- Parametric: Pearson
- Non-parametric: Spearman, Kendall, etc.
- Regression analysis:
- Linear methods

OBJECTIVES

- To be able to evaluate and interpret the product moment correlation coefficient and Spearman's correlation coefficient
- To be able to find and interpret the equations of regression lines
- To be able to investigate the strength and direction of a relationship between independent and dependent variables

Correlation: 3 Characteristics

Correlation: a statistical technique that measures and describes the degree of linear relationship between two variables

1. Direction: Positive (+) vs. Negative (-)
2. Degree of association:

- Takes values between -1 and +1
- Absolute value = strength

3. Form: Linear vs. Non-linear

Correlation is applied on two variables

Correlation: 1. Direction

Large values of $\mathrm{X}=$ large values of Y Small values of $X=$ small values of Y
e.g. IQ (Intelligence Quotient) and SAT
e.g. SPEED and ACCURACY

Correlation: 2. Degree of association

Correlation: 3. Form

Linear

Boiling point: Estimated (tr) and predicted (ts) $-\mathrm{n}_{\mathrm{t}}=2 / 3 \cdot \mathrm{n}$
Bolboacă SD, Jäntschi L. Modelling the property of compounds from structure: statistical methods for models validation. Environmental Chemistry Letters 2008;6:175181.

Non-linear

Figure 2. The dependence between r^{2} and the number of independent variables for $4<x \leq 10$

Bolboacă SD, Jäntschi L. Dependence between determination coefficient and number of regressors: a case study on retention times of mycotoxins. Studia Universitatis BabesBolyai Chemia 2011;LVI(1):157-166.

Pearson Correlation Coefficient

Symbol: r, R

A value ranging from -1.00 to 1.00 indicating the strength (look to the number of correlation coefficient) and direction (look to the sign of the correlation coefficient) of the linear relationship.

- Absolute value indicates strength
- + /- indicates direction

Pearson Correlation Coefficient

Assumptions:

- The errors in data values are independent from one another
- Correlation always requires the assumption of a straight-line relationship
- The variables are assumed to follow a bivariate normal distribution
http://www.aos.wisc.edu /~dvimont/aos575/Hand outs/bivariate notes.pdf

Pearson Correlation Coefficient

- For a strong positive association, the SP (sum of products) will be a big positive number

Pearson Correlation Coefficient

- For a strong negative association, the SP will be a big negative number

Pearson Correlation Coefficient

- For a weak association, the SP will be a small number (+ and - will cancel each other out)

Pearson Correlation Coefficient: INTERPRETATION

- A measure of strength of association: how closely do the points cluster around a line?
- A measure of the direction of association: is it positive or negative?
- Empirical rules - Colton [Colton T. Statistics in Medicine. Little Brown and Company, New York, NY 1974]:
- $\mathrm{R} \subset[-0.25$ to +0.25$] \rightarrow$ No relation
- $\mathrm{R} \subset(0.25$ to +0.50$] \cup(-0.25$ to -0.50$] \rightarrow$ weak relation
- $\mathrm{R} \subset(0.50$ to +0.75$] \cup(-0.50$ to -0.75$] \rightarrow$ moderate relation
- $\mathrm{R} \subset(0.75$ to +1$) \cup(-0.75$ to -1$) \rightarrow$ strong relation

Pearson Correlation Coefficient: Interpretation

- The P-value is the probability that you would have found the current result if the correlation coefficient were in fact zero (null hypothesis).
- If this probability is lower than the conventional significance level (e.g. 5\%) (p <0.05) \rightarrow the correlation coefficient is called statistically significant.
- "Results: Fatigue correlated with MRCD score (Medical Research Council dyspnoea score) ($\mathrm{r}=0.57, \mathrm{P}<0.001$) and $\mathrm{FEV}(1) \%$ predicted ($\mathrm{r}=-$ $0.30, \mathrm{P}=0.001$)."

> Hester KL, Macfarlane JG, Tedd H, Jary H, McAlinden P, Rostron L, Small T, Newton JL, De Soyza A. Fatigue in bronchiectasis. QJM. 2012;105(3):235-40.

Spearman Rank Correlation Coefficient

- Not continuous measurements
- The assumption of bivariate normal distribution is violated
- Symbol: ρ (Rho Greek Letter)

$$
\rho=\frac{\sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right) \times\left(\mathrm{y}_{\mathrm{i}}-\overline{\mathrm{y}}\right)}{\sqrt{\sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right)^{2} \sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{y}_{\mathrm{i}}-\overline{\mathrm{y}}\right)^{2}}}
$$

- The sign of the Spearman correlation indicates the direction of association between X (the independent variable) and Y (the dependent variable).
- $\rho=1 \rightarrow$ the two variables being compared are monotonically related. N.B. This does not give a perfect Pearson correlation.

Spearman Rank Correlation Coefficient

Table 3. Correlations between REACH scores and established external measures.

Outcome Measure	Spearman rank correlation coefficient
UE use measures	
MAL ($\mathrm{n}=96$)	$\mathrm{rho}=0.94, \mathrm{p}<0.001$
Affected UE Activity Counts ($\mathrm{n}=68$)	rho $=0.61, \mathrm{p}<0.001$
UE function measures	
ARAT ($\mathrm{n}=96$)	$\mathrm{rho}=0.93, \mathrm{p}<0.001$
SIS-hand ($\mathrm{n}=96$)	$\mathrm{rho}=0.94, \mathrm{p}<0.001$
UE impairment measures	
Chedoke-arm and hand ($\mathrm{n}=96$)	$\mathrm{rho}=0.91, \mathrm{p}<0.001$
Chedoke-shoulder pain ($\mathrm{n}=96$)	rho $=0.24, p=0.02$
UE: upper extremity; MAL: Motor Activity Log; UE: upper extremity; ARAT Action Research Arm Test; SIS-hand: Stroke Impact Scale-hand scale; Chedoke-arm and hand: Chedoke-McMaster arm and hand scales; Chedoke-shoulder pain: Chedoke-McMaster should pain scale. doi:10.1371/journal.pone.0083405.t003	

Properties of Correlation Coefficient

- A standardized statistic - will not change if you change the units of X or Y .
- The same whether X is correlated with Y or vice versa
- Fairly unstable with small n
- Vulnerable to outliers
- Has a skewed distribution

INTERPRETATION OF R-SQUARED ($\mathbf{R}^{\mathbf{2}}$)

- The amount of covariation compared to the amount of total variation.

$$
\mathrm{R}^{2}=\text { explained variance / overall variance }
$$

- The percent of total variance that is shared variance.
- E.g. If $\mathrm{r}=0.80$, then X explains 64% of the variability in Y (and vice versa)

García R, Villar AV, Cobo M, Llano M, Martín-Durán R, Hurlé MA, Francisco Nistal J. Circulating levels of miR-133a predict the regression potential of left ventricular hypertrophy after valve replacement surgery in patients with aortic stenosis. J Am Heart Assoc. 2013;2(4):e000211.

REGRESSION ANALYSIS

- Multiple linear regression (normally distributed outcome)
- Logistic regression (binary outcomes)
- Cox proportional hazards regression (the outcome is time-to-event)

MUltivariate Regression Models by Example

Outcome	Example	Regression	Eq.	Significance of coefficients
Continuous	Blood pressure	Linear	$\mathrm{BP}(\mathrm{mmHg})=\alpha+$ $\beta_{\text {age(years) }+}$ β salt(tps/day)+ β smoker(no/day)	slopes tells how much the outcome variable increases for every 1- unit increase in each predictor
Binary	High blood pressure (yes/no)	Logistic	ln (odds of high blood pressure) $=$ $\alpha+\beta$ age(years) + β salt(tps/day)+ β smoker(yes/no)	odds ratio tells how much the odds of the outcome increase for every 1-unit increase in each predictor
Time-to-event	Time-to- stroke	Cox	ln (rate of stroke) $=$ $\alpha+\beta$ age(years) + β salt(tps/day)+ β smoker(yes/no)	hazard ratio tells how much the rate of the outcome increases for every 1-unit increase in each predictor

Regression Analysis

- Many (independent) variables - Which to be selected in the model?
- Different outcome variable (continuous, binary, time-related)
- Important: 5 to 20 variable (at least 10 subject for variable) \& n \& "sufficient"
- Aims:
- Identification of important predictors (independent variables) the number of independent variables should be as smallest as possible
- Prediction of the outcome of interest
- Stratification by risk
- ...

Linear Regression

- But how do we describe the line?
- If two variables are linearly related it is possible to develop a simple equation to predict one variable from the other
- The outcome variable is designated the Y variable, and the predictor variable is designated the X variable
- E.g. centigrade to Fahrenheit:

$$
\mathrm{F}=32+1.8^{\circ} \mathrm{C}
$$

this formula gives a specific straight line

Linear Equation

- $\mathrm{F}=32+1.8(\mathrm{C})$
- General form is $\mathrm{Y}=\mathrm{a}+\mathrm{bX}$
- The prediction equation: $\mathrm{Y}^{\prime}=\mathrm{a}+\mathrm{bX}$
$\square \mathrm{a}=$ intercept, $\mathrm{b}=$ slope, $\mathrm{X}=$ the predictor, $\mathrm{Y}=$ the criterion
- a and b are constants in a given line; X and Y change

Linear Equation

Predictor

Different b's...

Different a's...

Linear Equation

Different a's and b's ...

Slope and Intercept

Equation of the line: $\mathrm{Y}^{\prime}=\mathrm{a}+\mathrm{bX}$

- The slope b: the amount of change in Y with one unit change in X

$$
b=r \frac{s_{y}}{s_{x}}=\frac{S P}{S S_{X}}
$$

- The intercept a: the value of Y when X is zero

$$
a=\bar{Y}-b \bar{X}
$$

- The slope is influenced by r, but is not the same as r

When there is no linear association ($\mathrm{r}=0$), the regression line is horizontal, $b=0$.

and our best estimate of age is 29.5 at all heights.

When the correlation is perfect ($\mathrm{r}= \pm 1.00$),

 all the points fall along a straight line with a slope$$
b=r \frac{s_{y}}{s_{x}}
$$

When there is some linear association

 ($0<|r|<1$), the regression line fits as close ${ }^{+\infty}$ the points as possible and has a slope $b=r \frac{s_{y}}{s_{x}}$

Where did this line come from?

- It is a straight line which is drawn through a scatterplot, to summarize the relationship between X and Y
- It is the line that minimizes the squared deviations ($\left.\mathrm{Y}^{\prime}-\mathrm{Y}\right)^{2}$
- We call these vertical deviations "residuals"

Regression Line

- Minimizing the squared vertical distances, or "residuals"

Regression Coefficients Table

Predictor	Unstandardized Coefficient	Standard error	t	p
Intercept	a	SE_{a}	$\mathrm{t}=\mathrm{a} / \mathrm{SE}_{\mathrm{a}}$	
Variable X	b	SE_{b}	$\mathrm{t}=\mathrm{b} / \mathrm{SE}_{\mathrm{b}}$	

Regression parameter estimates, \boldsymbol{P} values and confidence intervals for the accident and emergency unit data

	Coefficient	Standard error of coefficient	t	P	Confidence interval
Constant, or intercept	0.72	0.346	2.07	0.054	-0.01 to +1.45
In urea	0.017	0.005	3.35	0.004	0.006 to 0.028

Linear Regression

Analysis of variance for the accident and emergency unit data

Source of variation	Degrees of freedom	Sum of squares	Mean square	F
Regression	1	1.462	1.462	11.24

Regression line, its 95\% confidence interval and the 95\% prediction interval for individual patients.

Linear Regression

(a) Scatter diagram of y against x suggests that the relationship is nonlinear. (b) Plot of residuals against fitted values in panel a; the curvature of the relationship is shown more clearly. (c) Scatter diagram of y against x suggests that the variability in y increases with x. (d) Plot of residuals against fitted values for panel c ; the increasing variability in y with x is shown more clearly.

Linear Regression

Plot of residuals against fitted values for the accident and emergency unit data.

Normal plot of residuals for the accident and emergency unit data.

Linear Regression Model

http://www.sciencedirect.com/science/article/pii/S2213158214001648

Fig. 4.
Linear regression analysis of 7-day and final infarct volumes. The solid line represents the regression line and dashed lines represent the 95% prediction and confidence intervals. Calculated p values for slope (1.043) and intercept (3.734) were <0.001 and 0.009 , respectively.
Final Infarct Volume

Linear Regression Model by Example

Table 2. Linear regression analysis for independent covariates of apo A-I levels ($\mathrm{mg} / \mathrm{dL}$), by gender

Variables	Total ($\mathrm{n}=1452 \mathrm{t}$)			Men ($\mathrm{n}=662$)			Women ($\mathrm{n}=790$)			
	β coeff.*	SE	p	β coeff. *	SE	p	β coeff. *	SE	p	
Gender, female	3.0	1.7	0.074							
Age, 11 years	-0.23	0.07	0.76	-0.76	0.99	0.44	0.23	1.12	0.84	
HDL-cholesterol, $12 \mathrm{mg} / \mathrm{dL}$	13.4	0.73	<0.001	14.2	1.01	<0.001	12.6	1.07	<0.001	
Apo B, $34 \mathrm{mg} / \mathrm{dL}$	4.0	0.78	<0.001	4.32	1.05	<0.001	3.57	1.12	0.002	
Systolic BP, 25 mmHg	2.38	1.35	0.081	5.0	2.0	0.013	0.72	1.90	0.70	
Diastolic BP, 12 mmHg	1.45	1.09	0.19	0.5	1.46	0.73	2.2	1.6	0.17	
Current vs never smoking	-2.14	1.84	0.24	-1.90	1.17	0.41	-2.12	2.83	0.46	
Fast. triglycerides\\| 1.66-fold	1.36	1.34	0.28	1.55	1.41	0.13	1.02	1.47	0.85	
Waist circumfer., $11 / 13 \mathrm{~cm}$	-0.82	0.78	0.30	-2.05	1.05	0.049	0.09	1.18	0.94	
Fast. glucose, $30 \mathrm{mg} / \mathrm{dL}$	-0.24	0.69	0.73	-0.96	0.90	0.29	0.52	1.02	0.62	
explained apoA-I variance, \%	26			28			19			

Each model was significant ($p<0.001$). \uparrow Log-transformed values
*For each 1-SD increment in the independent variables, the corresponding change in apoA-I level (in $\mathrm{mg} / \mathrm{dL}$) is shown by the β coefficient (SE)
†All 10 variables (especially fasting glucose and triglycerides) were available only in 66% of the sample.
Apo - apolipoprotein, BP - blood pressure, circumfer - circumference, fast.- fasting, HDL - high-density lipoprotein

Onat A, Can G, Örnek E, Çiçek G, Murat SN, Yüksel H. Increased apolipoprotein A-I levels mediate the development of prehypertension among Turks. Anadolu Kardiyol Derg. 2013;13(4):306-14.

Logistic Regression Model by Example

> IF 95% CI did not contain the value of 1 , the variable is a risk factor for the outcome

Table 3. Logistic regression analysis for prediction of incident prehypertension from normotensives, by gender

	RR	95\% CI	RR	95\% CI	RR	95\% CI	
Model 1*							
Sex, female	1.38	0.83; 2.30					
Age, 11 years	1.66	1.36; 2.06	1.84	1.38; 2.45	1.49	1.03; 2.15	
Waist circumference, $11 / 13 \mathrm{~cm}$	1.44	1.14; 1.82	1.38	1.01; 1.92	1.58	1.09; 2.27	
Apolipoprotein A-I, $35 \mathrm{mg} / \mathrm{dL}$	1.23	0.97; 1.52	1.11	0.78; 1.57	1.37	0.97; 1.93	
Current vs never smoking	0.92	0.55; 1.56	0.60	0.31; 1.19	1.40	0.65; 3.02	
Diabetes, yes/no	1.55	0.60; 4.01	0.52	0.11; 2.56	6.55	1.59; 27.1	
Statin usage, yes/no	4.46	0.89; 22.3	0.01	NS	30.2	2.7; 333	
Model 2 * \ddagger							
Sex, female	1.27	0.73; 2.22					
Age, 11 years	1.75	1.35; 2.36	1.90	1.35; 2.69	1.61	1.06; 2.43	
Fasting triglycerides\\| 1.66 -fold	1.10	0.89; 1.36	1.15	0.88; 1.51	0.97	0.67; 1.40	
Apolipoprotein A-I, $35 \mathrm{mg} / \mathrm{dL}$	1.32	1.04; 1.74	1.42	1.000; 2.00	1.23	0.81; 1.87	
Diabetes, yes/no	1.93	0.68; 5.43	0.41	0.05; 3.40	11.2	2.29; 54.7	
Statin usage, yes/no	2.43	0.19; 31.7	0.02	NS	2847	NS	
*Hypertensive individuals at baseline were excluded łand fasting triglyceride values were unavailable in the cohort. ๆ log-transformed values. Statins were used in 5 men and 3 women in the lowest model. Significant values are highlighted in boldface. NS: not significant tnumber of cases/number at risk							

$$
\begin{aligned}
& \text { Onat A, Can G, Örnek E, Çiçek G, Murat SN, Yüksel H. Increased apolipoprotein A-I levels mediate the } \\
& \text { development of prehypertension among Turks. Anadolu Kardiyol Derg. 2013;13(4):306-14. }
\end{aligned}
$$

COX REGRESSION

Statistically significant hazard ratios (HR) did not

 include the value of 1 in their confidence intervals| Table 3 |
| :--- |
| Cox regression analyses of serum adiponectin tertiles for incident diabetes, |
| coronary heart disease and hypertension, adjusted for sex, age and relevant |
| confounders |

INFERENTIAL STATISTICS: SUMMARY

Continuous Outcome Variable

Are the observations independent or correlated?		Alternatives if normality is violated (\pm small n):
independent	correlated	
T-test: compares means	Paired t-test: compares means in paired samples	Non-parametric statistics
between two independent groups		Wilcoxon sign-rank test: non-parametric alternative to the
ANOVA: compares means	Repeated-measures ANOVA: compares changes over time in the means of two or more groups (repeated measurements)	paired t-test
between > 2 independent groups		Wilcoxon sum-rank te
Pearson's correlation coefficient: shows linear correlation between two		(=Mann-Whitney test): nonparametric alternative to the t test
continuous variables	Mixed models/GEE modeling: multivariate regression techniques to compare changes over time between two or more groups; gives rate of change over time	Kruskal-Wallis tes
Linear regression: univariate / multivariate regression		parametric alternative to ANOVA
/ multivariate regression technique used when the outcome is continuous; gives slopes		Spearman rank correlation coefficient: non-parametric alternative to Pearson's correlation coefficient

Binary (top) / Time-to-Event (bottom) Outcome Variable

Are the observations independent or correlated?		Alternatives if normality is violated (\pm small n):
independent	correlated	
Relative risks: odds ratio or risk ratio	McNemar's Chi-square test: compares binary outcome between paired groups	Fisher's exact test: compares proportions between independent groups when there are sparse data (some cells <5). regression matched data
Logistic regression: multivariate-adjusted odds ratios	GEE modeling: multivariate regression technique for a binary outcome when repeated measures exists	McNemar's exact test: compares proportions between correlated groups when there are sparse data (some cells <5).

Are the observations independent or correlated?		Alternatives if normality is violated (\pm small n):
independent	correlated	
Kaplan-Meier statistics: estimates survival functions for each group \& compares survival functions with log-rank test	na	Time-dependent predictors or time- dependent hazard ratios (tricky!)
Cox regression: gives multivariate-adjusted hazard ratios		

Thank you.

THINGS GOT REALLY INTERESTING WHEN THE STATISTICIAN STARTED DOING WARD ROUNDS

"Our statistician will drop in and explain why you have nothing to worry about."

