DESCRIPTIVE STATISTIC

Sorana D. Bolboacă

OBJECTIVES

Measures of Centrality	Measures of Spread
✓ Mean	✓ Range (amplitude)
✓ Mediana	✓ Variance
✓ Mode	 Standard deviation
✓ Central value	 Coefficient of variance
	 Standard error
Measures of Symmetry	Measures of Localization
✓ Skewness	√Quartile
✓ Kurtosis	✓Percentiles

- Mean (arithmetic average)
- Median: midpoint of the distribution (50th percentile)
- Mode: most frequent observation

Population \rightarrow **parameter**

$$\mu = \frac{\sum_{i=1}^{n} X_{i}}{n}$$

Sample \rightarrow statistics $\overline{X} = \frac{\sum_{i=1}^{n} X_{i}}{\sum_{i=1}^{n} X_{i}}$

Mode / Modal value

Mode / Modal value

EXAMPLE

11 student's practical exam scores: 4, 9, 5, 8, 6, 7, 9, 10, 8, 6, 5

- Mean = (4+9+5+8+6+7+9+10+8+6+5)/11 = 7
- Multimodal: 5, 6, 8, 9
- Median: 4, 5, 5, 6, 6, 7 8, 8, 9, 9, 10
 - n (sample size) = 11

• Me =
$$X_{(n+1)/2} = X_6 = 7$$

EXAMPLE

12 student's practical exam scores:

4, 9, 5, 8, 6, 4, 9, 10, 8, 6, 5, 4

- Mean = (4+9+5+8+6+4+9+10+8+6+5+4)/12 = 6.5
- Unimodal: 4
- Median: 4, 4, 4, 5, 5, 6, 6, 8, 8, 9, 9, 10,

• Me =
$$(X_{n/2} + X_{n/2+1})/2 = (X_6 + X_7)/2 = (6+6)/2 = 6$$

Mode: different width of the bin alter the distribution of data and what the histogram tell us

Arithmetic average: <u>http://spark.rstudio.com/minebocek/CLT_mean/</u>

100

-100

-50

0

50

-100

-50

0

50

100

-100

-50

0

100

50

-50

0

50

100

-100

Population distribution: Normal

Population distribution: Normal

©2014 - Sorana D. BOLBOACĂ

27-0ct-14

Weighted mean

Arithmetic mean

Arithmetic mean is a special case of the weighted mean $(W_i = 1)$.

- Spread related to the central value
- The data are more spread as their values are more different by each other

Population variance:

$$\sigma^{2} = \frac{SS}{n} = \frac{\sum_{i=1}^{n} \left(X_{i} - \overline{X}\right)^{2}}{n}$$

Sample variance (the sample variance tend to sub estimate the population variance):

$$s^{2} = \frac{SS}{n-1} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}{n-1}$$

- Standard deviation (sd) = square root of variance
 - Describe variability
- Is useful when considering how close the data are to the mean

• Population (
$$\sigma$$
)
• Sample (s)
 $s = \sqrt{s^2} = \sqrt{\frac{SS}{n-1}} = \sqrt{\frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{n-1}}$

Variability vs. Diversity

Which of the following sets of ball has a <u>more diverse composition</u> <u>of colors</u>?

Variability vs. Diversity

Which of the following sets of ball has more <u>variable hours of use</u>?

Variability vs. Diversity

Which of the following sets of ball has <u>more variable hours of use</u>?

- ↓ s → data is clustered closely around the mean value
- \uparrow s \rightarrow a wider spread around the mean

http://onlinestatbook.com/2/summarizing_distributions/spread_sim.html

COEFICIENT OF VARIATION

- A normalized measure of dispersion of a probability distribution
- Ratio of the standard deviation to the mean
- Computed on data measured on ratio scale which can have just positive values

Is a dimensionless number

CV < 0.10	Homogenous
$0.10 \le CV < 0.20$	Relative homogenous
$0.20 \le CV < 0.30$	Relative heterogeneous
> 0.20	<u>Heterogeneous</u>

- Standard Error (SEM)
- indicates the accuracy of the sample mean: SEM = s/\sqrt{n}
- n increase \rightarrow SEM decrease

SHAPE MEASURE

http://chubbyrevision.weebly.com/representation-of-data.html

^{©2014 -} Sorana D. BOLBOACĂ

27-0ct-14

SHAPE MEASURES: SKEWNESS

- Interpretation [Bulmer MG. Principles of Statistics. Dover, 1979.] – applied to population
 - If skewness is less than -1 or greater than +1, the distribution is highly skewed.
 - □ If skewness is between -1 and -½ or between +½ and +1, the distribution is moderately skewed.
 - □ If skewness is between -½ and +½, the distribution is approximately symmetric.
- Can you conclude anything about the population skewness looking to the skewness of the sample? → Inferential statistics

SHAPE MEASURES

http://mvpprograms.com/help/mvpstats/distributions/SkewnessKurtosis

SHAPE MEASURES: KURTOSIS

- The reference standard is a normal distribution, which has a kurtosis of 3.
- Excess kurtosis (kurtosis in Excel) = kurtosis 3
 - □ A normal distribution has kurtosis exactly 3 (excess kurtosis exactly 0). Any distribution with kurtosis ≅3 (excess ≅0) is called **mesokurtic**.
 - A distribution with kurtosis <3 (excess kurtosis <0) is called **platykurtic**. Compared to a normal distribution, its central peak is lower and broader, and its tails are shorter and thinner.
 - A distribution with kurtosis >3 (excess kurtosis >0) is called leptokurtic. Compared to a normal distribution, its central peak is higher and sharper, and its tails are longer and fatter.

Population distribution: Right skewed

LOCALIZATION MEASURES

Quatiles:

□ Split the series in 4 equal parts:

LOCALIZATION MEASURES

The symmetry of a distribution could be analyzed using quartiles

- Let Q_1 , Q_2 and Q_3 be 1st (1/3), 2nd (1/2) and 3rd (3/4) quartiles:
- Q₂-Q₁ ≈ Q₃-Q₂ (≈ almost equal) → the distribution is almost symmetrical
- Q_2 - $Q_1 \neq Q_3$ - $Q_2 \rightarrow$ the distribution is asymmetrical (through left or right)

MEASURES OF LOCALIZATION: QUARTILES

2.80	2.97	3.05	3.25	3.40	3.45	3.80	4.10	4.30	4.40
X ₁	X ₂	X ₃	X ₄	X ₅	X ₆	X ₇	X ₈	X ₉	X ₁₀

 $Q_1 = 3.03$ $Q_2 = 3.43$ $Q_3 = 4.15$

$$Q_2 - Q_1 = 3.43 - 3.03 = 0.40$$

 $Q_3 - Q_2 = 4.15 - 3.43 = 0.72$

How do you interpret this result???

Population distribution: Right skewed

Population distribution: Left skewed

Population distribution: Left skewed

©2014 - Sorana D. BOLBOACĂ

Remember!

http://www.sagepub.com/upm-data/43350_4.pdf

 Table 4.1
 Measures of Central Tendency and Dispersion by Level of Measurement

Level of Measurement	Measures of Central Tendency	Measures of Dispersion
nominal	mode	percent distribution
ordinal	median mode	minimum and maximum range percentiles percent distribution
interval/ratio	mean median mode	variance standard deviation minimum and maximum range percentiles percent distribution