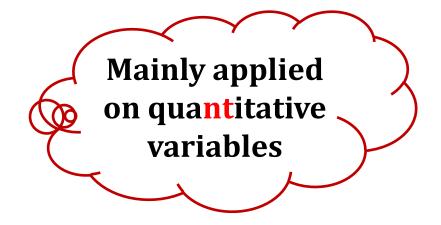
DESCRIPTIVE STATISTICS II

Sorana D. Bolboacă

OUTLINE

- Measures of centrality
- Measures of spread
- Measures of symmetry
- Measures of localization



DESCRIPTIVE STATISTICS PARAMETERS

Measures of Centrality	Measures of Spread
✓ Mean	✓ Range (amplitude)
✓ Mediana	✓ Variance
✓ Mode	✓ Standard deviation
✓ Central value	✓ Coefficient of variance
✓	✓ Standard error
Measures of Symmetry	Measures of Localization
✓ Skewness	✓ Quartile
✓ Kurtosis	✓ Percentiles

MEASURES OF CENTRALITY

- Simple values that give us information about the distribution of data
- ■Parameters:
 - Mode
 - Median
 - Mean (arithmentic mean)
 - Geometric mean
 - Harmonic mean
 - Central value

- Called also Modal Value
 - □ Is the most frequent value on the sample
- There is no mathematical formula for calculus
- Correspond the value of the highest pick on the graphic of frequency distribution
 - Identify the mode for all previously graphical presentations
 - MODE(number1, number2, ..., numbern)

Unimodal series:

- 2 1 2 1 1
- □ The age of patients hospitalized with diarrheic syndrome at 1st Pediatric Clinic between 11.01 11.08.2008
- Bimodal series:

2	1	2	1	1
2	2	1	3	3

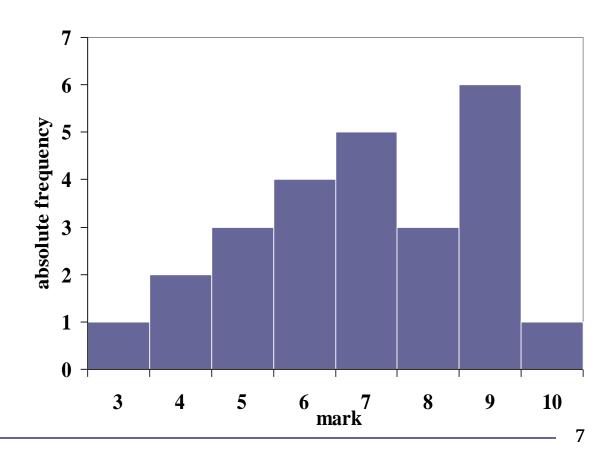
Trimodal series (Multimodal):

2	1	2	1	1
2	3	3	3	4

It is NOT influenced by extreme values

For a sample of n = 25 students the marks of the practical exam at Informatics were:

3, 4, 9, 5, 4, 6, 7, 7, 8, 5, 9, 7, 9, 5, 6, 9, 10, 6, 7, 7, 8, 9, 8, 9, 6 **Mode = 9**



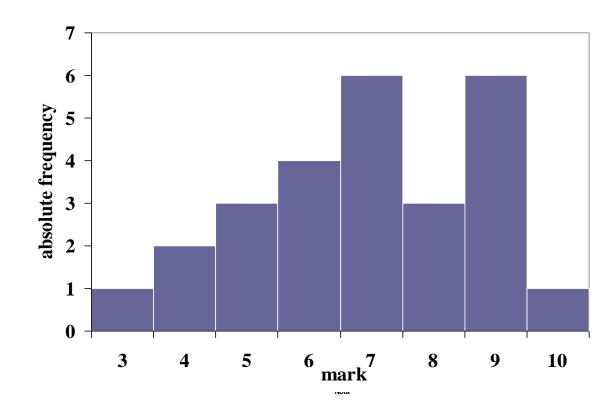
©2015 - Sorana D, BOLBOACĂ

Bi-modal series

For a sample of 26 students, the marks obtained at Informatics exam were:

3, 4, 9, 5, 4, 6, 7, 7, 8, 5, 9, 7, 9, 5, 7, 6, 9, 10, 6, 7, 7, 8, 9, 8, 9, 6

Mode = 7 & 9



- Is the value that split the series of data into two half
- Steps in finding the median:
 - Sort the data ascending
 - Locate the position of median in the string and determine its value
 - Its value is equal to the value of 50th percentile

If sample size is odd, we will use the following formula:

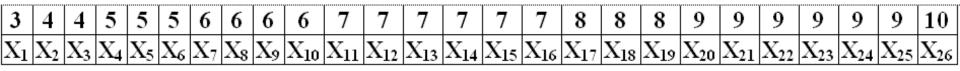
$$Me = X_{\underbrace{n+1}_{2}}$$

If sample is even, we will use the following formula:

$$Me = \frac{X_n + X_{n-1}}{2}$$

- 1. It is not affected by extreme values of data series.
- The median value could be not representative for the data on the series if individual data did not grouped in the neighbour of the central value (median).
- Median is a measure of central tendency that minimizes the sum of absolute values of deviations from a value X on the line of the real numbers.

- **3**, 4, 9, 5, 4, 6, 7, 7, 8, 5, 9, 7, 9, 5, 7, 6, 9, 10, 6, 7, 7, 8, 9, 8, 9, 6
- Numbers are ordered ascending:



- n = 26 (even number)
- $Me = (X_{13} + X_{14})/2 = (7+7)/2 = 7$
 - = MEDIAN(number1, number2, ..., number26)

11

- The sum of all data series divided by the sample size
- Changing a single data series does not affect modal or median values but will affect the arithmetic mean
- Population (the mean of a variable in a population is known):

$$\mu = \frac{\sum_{i=1}^{n} X_{i}}{n}$$

■ Sample (is necessary to be calculated):

$$X = \frac{\sum_{i=1}^{n} X_i}{n}$$

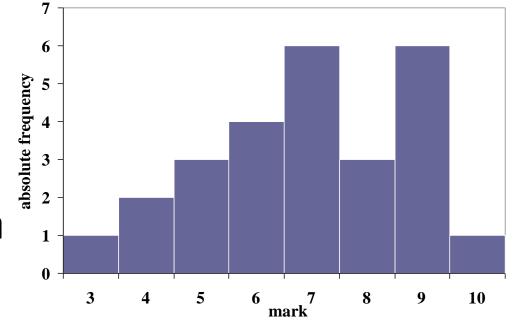
3	4	4	5	5	5	6	6	6	6	7	7	7	7	7	7	8	8	8	9	9	9	9	9	9	10
\mathbf{X}_{1}	X_2	X_3	X_4	X_5	X_6	X_7	X_8	X9	X_{10}	X 11	X 12	X_{13}	X_{14}	X_{15}	X 16	X 17	X_{18}		X_{20}		X22	X_{23}	X_{24}	X_{25}	X_{26}

Arithmetic mean:

$$= (3+4+...+9+10)/26$$

$$= 6.92$$

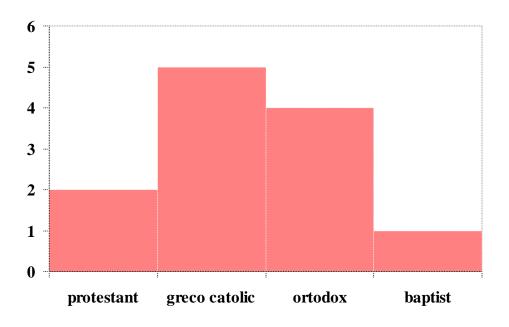
=AVERAGE (number1,..., number26)



Is the preferred measure of centrality both as a parameter for describing data and as estimator.

It has significance just IF the variable of interest is on

interval scale.



Properties:

- 1. Any value of the series is taken into account in calculating the mean.
- 2. Outliers may influence the arithmetic mean by destroying its representativeness.
- The value of the arithmetic mean is among the data series.
- Sum of the differences between individual values and mean is zero :

$$\sum_{i=1}^{n} (X_i - \overline{X}) = 0$$

Properties:

- 5. <u>Changing the origin of measurement scale</u> of X-variable will influence the mean, Let X" = X + C (where C is a constant).
- Transformation of the measurement scale of X-variable will influence the mean, Let X'' = h*X (where h is a constant).
- Sum of squares of deviations from the arithmetic mean is the minimum sum of squares of deviations from X of the values of series

$$\sum_{i=1}^{n} (X_{i} - \overline{X})^{2} = \min_{X \in \mathbb{R}} \sum_{i=1}^{n} (X_{i} - X)^{2}$$

MEASURES OF CENTRALITY: WEIGHTHED MEAN

• Every X_i value is multiply with a non-negative weight W_i, which indicate the importance of the value reported to all other values:

$$\mathbf{m}_{X} = \frac{\sum_{i=1}^{n} \mathbf{W}_{i} \mathbf{X}_{i}}{\sum_{i=1}^{n} \mathbf{W}_{i}}$$

■ If the weights W_i are choose to be equal and positive we will obtain the arithmetic mean.

GEOMETRIC MEAN

Used to describe the proportional growth (including exponential growth)

$$G = \sqrt{X_1 \cdot X_2}$$

- Medical application:
 - reporting experimental IgE results [Olivier J, Johnson WD, Marshall GD, The logarithmic transformation and the geometric mean in reporting experimental IgE results: what are they and when and why to use them? Ann Allergy Asthma Immunol. 2008;100(4):333-7.]
 - □ The intravaginal ejaculation latency time (IELT) [Waldinger MD, Zwinderman AH, Olivier B, Schweitzer DH, Geometric mean IELT and premature ejaculation: appropriate statistics to avoid overestimation of treatment efficacy. J Sex Med. 2008;5(2):492-9.]

□

HARMONIC MEAN

Used for average for rates

$$H = \frac{n}{\sum_{i=1}^{n} \frac{1}{X_i}}$$

Example:

- A blood donor fills a 250 mL blood bag at 70 mL on the first visit and 90 mL on the second visit, What is the average rate at which the donor fills the bag?
- □ Harmonic mean = 2/(1/70+1/90) = 78.75 mL
- Arithmetic mean = 80 mL

CENTRAL VALUE

Central value:

Central value =
$$\frac{X_{min} + X_{max}}{2}$$

ADVANTAGES AND DISADVANATEGES

Average	Advantages	Disadvantages
Mean	Use all data	Influenced by outliers
	Mathematically manageable	Distorted by skewed data
Median	Not influenced by the outliers Not distorted by skewed data	Ignore most of the data
Mode	Easily determined for qualitative data	Ignore most of the data
Geometric mean	Appropriate for right-skewed data	Appropriate if the log transformation produce a symmetrical distribution
Weighted mean	Count relative importance of each observation	Weights must be known or estimated

MEASURES OF SPREAD

- Spread related to the central value
- The data are more spread as their values are more different by each other

Parameters:

- 1. Range
- 2. Variance (VAR)
- 3. Standard deviation (STDEV)
- 4. Coefficient of variation
- Standard Error

MEASURES OF SPREAD

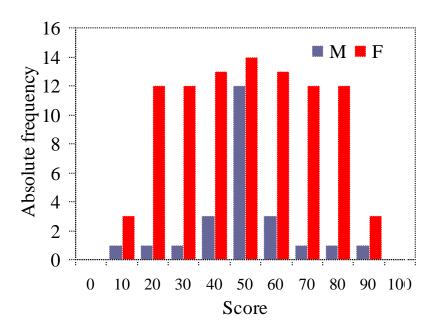
$$\blacksquare R = X_{max} - X_{min}$$

- It tells us nothing about how the data vary around the central value
- Outliers significantly affect the value of range

RANGE (Descriptive Statistics)

$$R_{\rm M} = 90-10 = 80$$

- $R_F = 90-10 = 80$
 - Equal values BUT different spreads



23

MEASURES OF SPREAD: MEAN OF DEVIATION

From the mean:

$$R_{\overline{X}} = \frac{\sum_{i=1}^{n} |X_i - \overline{X}|}{n}$$

■ From the Median:

$$R_{Me} = \frac{\sum_{i=1}^{n} |X_i - Me|}{n}$$

StdID	Mark	R _{Mean}	R _{Median}
34501	8	1.20	0.00
27896	3	-3.80	-5.00
32102	4	-2.80	-4.00
32654	8	1.20	0.00
32014	9	2.20	1.00
31023	9	2.20	1.00
30126	5	-1.80	-3.00
34021	9	2.20	1.00
33214	9	2.20	1.00
32016	4	-2.80	-4.00
Mean	6.80		24
Median	8.00		2-Nov-1

MEASURES OF SPREAD: MEAN OF

DEVIATION

- We analyse how different are the marks from the mean of ten students by using distances
- The deviation is greater as the mark is further form the mean
- To quantify how the distribution is diverted to other distribution we calculate the sum of deviations
- The difference from the mean is very close to zero

StdID	Note	R _{Mean}	R _{Median}
34501	8	1.20	0.00
27896	3	-3.80	-5.00
32102	4	-2.80	-4.00
32654	8	1.20	0.00
32014	9	2.20	1.00
31023	9	2.20	1.00
30126	5	-1.80	-3.00
34021	9	2.20	1.00
33214	9	2.20	1.00
32016	4	-2.80	-4.00
Sum		0.00	-12.00

25

MEASURES OF SPREAD: SQUARED DEVIATION FROM THE

MEAN

The squared deviation from the mean

Thus, the sum of squared deviation from the mean it will be obtain:

$$SS = \sum_{i=1}^{n} \left(X_i - \overline{X} \right)^2$$

StdID	Note	R _{Mean}	R _{Mean} ²
34501	8	1.20	1.39
27896	3	-3.80	14.59
32102	4	-2.80	7.95
32654	8	1.20	1.39
32014	9	2.20	4.75
31023	9	2.20	4.75
30126	5	-1.80	3.31
34021	9	2.20	4.75
33214	9	2.20	4.75
32016	4	-2.80	7.95
Sum		0.00	→ 55.60

MEASURES OF SPREAD: VARIANCE

- The mean of sum of squared deviation form the mean is called variance (it is expressed as squared units of measurements of observed data)
- Population variance:

$$\sigma^2 = \frac{SS}{n} = \frac{\sum_{i=1}^{n} \left(X_i - \overline{X}\right)^2}{n}$$

■ Sample variance (the sample variance tend to sub estimate the population variance):

$$s^{2} = \frac{SS}{n-1} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})}{n-1}$$

MEASURES OF SPREAD: VARIANCE

Steps:

- Calculate the mean,
- Find the difference between data and mean for each subject,
- Calculate the squared deviation from the mean,
- 4. Sum the squared deviation from the mean,
- Divide the sum to n if you work with the entire population or at (n-1) if you work with a sample,
- 6. $s^2 = 55.60/9 = 6.18$

StdID	Mark	R _{Mean}	R _{Mean} ²
34501	8	1.20	1.39
27896	3	-3.80	14.59
32102	4	-2.80	7.95
32654	8	1.20	1.39
32014	9	2.20	4.75
31023	9	2.20	4.75
30126	5	-1.80	3.31
34021	9	2.20	4.75
33214	9	2.20	4.75
32016	4	-2.80	7.95
Sum		0.00	55.60

MEASURES OF SPREAD: STANDARD DEVIATION

- Has the same unit of measurement as mean and data of the series
- It is used in descriptive and inferential statistics

$$s = \sqrt{s^2} = \sqrt{\frac{SS}{n-1}} = \sqrt{\frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{n-1}}$$

MEASURES OF SPREAD: STANDARD DEVIATION

Interval	% of contained observation
$\overline{X} \pm 1 \cdot s$	68
$\overline{X} \pm 2 \cdot s$	95
$\overline{X} \pm 3 \cdot s$	99.7

MEASURES OF SPREAD: COEFICIENT OF VARIATION

- Relative measure of dispersion
- Calculus formula:

$$CV = \frac{S}{X} * 100$$

 Is a parameter independent by the unit of measurements

MEASURES OF SPREAD: COEFICIENT OF VARIATION (CV)

 Interpretation of Homogeneity: The population could be considered

CV < 10%	Homogenous
$10\% \le CV < 20\%$	Relative homogenous
$20\% \le CV < 30\%$	Relative heterogeneous
> 30%	Heterogeneous

MEASURES OF SPREAD: STANDARD ERROR

- It is used as a measure of spread usually associated to mean (arithmetic mean)
- It is used in computing the confidence levels

$$ES = \frac{s}{\sqrt{n}}$$

MEASURES OF SYMMETRY: SKEWNESS

- Indicate for a series of data:
 - Deviation from the symmetry
 - Direction of the deviation from symmetry (positive / negative)
- Formula for calculus:

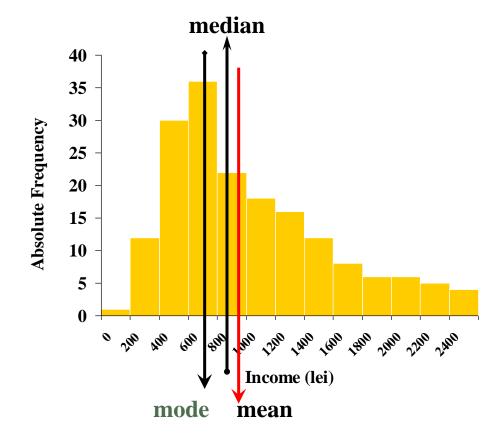
$$\mathbf{M}_3 = \frac{\sum_{i=1}^{n} (\mathbf{X}_i - \overline{\mathbf{X}})^3}{n}$$

34

MEASURES OF SYMMETRY: SKEWNESS

Positively skewed:

- **Mode** = 7000 Ron
- **Median** = 8870 Ron
- **Mean** = 9360 Ron



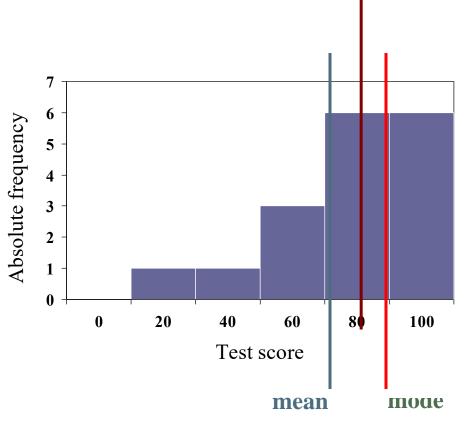
■ Mode < Median < Mean</p>

MEASURES OF SYMMETRY:

SKEWNESS

Negatively skewed:

Mode > Median > Mean



median

= SKEW(number1, ..., numbern)

MEASURES OF SYMMETRY: SKEWNESS

- Interpretation [Bulmer MG, Principles of Statistics, Dover, 1979,] – applied to population
 - □ If skewness is less than −1 or greater than +1, the distribution is **highly skewed**.
 - □ If skewness is between -1 and $-\frac{1}{2}$ or between $+\frac{1}{2}$ and +1, the distribution is **moderately skewed**.
 - □ If skewness is between $-\frac{1}{2}$ and $+\frac{1}{2}$, the distribution is **approximately symmetric**.
- Can you conclude anything about the population skewness looking to the skewness of the sample? → Inferential statistics

MEASURES OF SYMMETRY: KURTOSIS

 A measure of the shape of a series relative to Gaussian shape

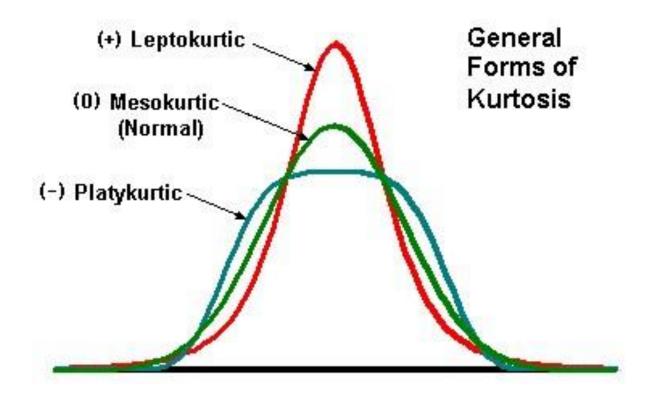
$$\alpha_4 = \frac{\frac{1}{n} \cdot \sum_{i=1}^{n} (X_i - \overline{X})^4}{S^4} - 3$$

= KURT(number1, ..., numbern)

MEASURES OF SYMMETRY: KURTOSIS

- The reference standard is a normal distribution, which has a kurtosis of 3.
- Excess kurtosis (kurtosis in Excel) = kurtosis 3
 - □ A normal distribution has kurtosis exactly 3 (excess kurtosis exactly 0), Any distribution with kurtosis \cong 3 (excess \cong 0) is called **mesokurtic**.
 - A distribution with kurtosis <3 (excess kurtosis <0) is called **platykurtic**, Compared to a normal distribution, its central peak is lower and broader, and its tails are shorter and thinner.
 - A distribution with kurtosis >3 (excess kurtosis >0) is called **leptokurtic**, Compared to a normal distribution, its central peak is higher and sharper, and its tails are longer and fatter.

MEASURES OF SYMMETRY: KURTOSIS



MEASURES OF LOCALIZATION

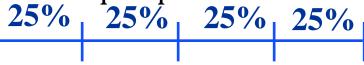
- Quartile
- Percentile
- Deciles

Excel function for quartile: QUARTILE

MEASURES OF LOCALIZATION: QUARTILES – DECILES

• Quartiles:

□ Split the series in 4 equal parts:



(minimum)

(median)

(maximum)

Decile:

Split the series in 10 equal parts:

Percentile:

□ Split the series in 100 equal parts

QUARTILES & SYMMETRY OF A DISTRIBUTION

- The symmetry of a distribution could be analyzed using quartiles:
- Let Q_1 , Q_2 and Q_3 be 1^{st} (1/3), 2^{nd} (1/2) and 3^{rd} (3/4) quartiles:
 - □ Q_2 - $Q_1 \approx Q_3$ - Q_2 (\approx almost equal) \rightarrow the distribution is almost symmetrical
 - □ Q_2 - $Q_1 \neq Q_3$ - $Q_2 \rightarrow$ the distribution is asymmetrical (through left or right)

MEASURES OF LOCALIZATION: QUARTILES

2.80	2.97	3.05	3.25	3.40	3.45	3.80	4.10	4.30	4.40
X_1	X ₂	X_3	X_4	X_5	X_6	X ₇	X ₈	X ₉	X ₁₀

$$\mathbf{Q}_1 = 3.03$$

$$Q_2 = 3.43$$

$$\mathbb{Q}_{3} = 4.15$$

$$Q_2$$
- Q_1 = 3.43 - 3.03 = 0.40

$$Q_3 - Q_2 = 4.15 - 3.43 = 0.72$$

How do you interpret this result???

MEASURES OF CENTRALITY: Type of Variables

	Nominal	Ordinal	Metric (Quantitative)
Mode	Yes	Yes	Yes
		(NOT recommended)	(NOT recommended at all)
Median	No	Yes	Yes
Mean	No	No	Yes
			(if data is symmetric and unimodal)

MEASURES OF SPREAD

	Range	Standard deviation
Nominal	No	No
Ordinal	Yes (NOT the best method)	No
Metric	Yes (NOT the best method)	Yes (if data is symmetric and unimodal)

Units of Measurements: Importance

- If to each data from a series add or subtract a constant:
 - The mean will increase or decrease with the value of the added constant
 - The standard deviation will NOT be changed
- If each data from a series is multiply or divide with a constant:
 - The mean will be multiply or divide with the value of the constant
 - □ The standard deviation will be multiply or divide with the value of the constant

RECALL!

- The units of measurements have influence on statistical parameters.
- Statistical parameters should be applied according to the type of data.
- Mean, Standard deviation, and Range are sensitive to outliers.
- When we use a summary statistic to describe a data set we lose a lot of the information contained in the data set.

Thank you for your attention!

