CONTINUOUS PROBABILITY DISTRIBUTIONS POINT ESTIMATORS & CONFIDENCE INTERVALS HYPOTHESIS TESTING

Sorana D. Bolboacă

OBJECTIVES

- Continuous distributions: Normal & Student
- Point estimators & Confidence intervals for point estimators
- Testing hypothesis: General Approach

CONTINUOUS PROBABILITY DISTRIBUTIONS

- Normal distribution and its standard form
 - Does your data follow a "bell shaped" pattern? (mean ~ median ~ mode)
- Also known Gaussian distribution
- Characteristics of normal distribution:
 - ~ 68% of values fall between mean and one standard deviation (in either direction)
 - ~ 95% of values fall between mean and two standard deviations (in either direction)
 - ~ 99.7% of values fall between mean and three standard deviations (in either direction)

NORMAL DISTRIBUTION

 When we have a normal distributed variable and we know the population mean (μ) and population standard deviation (σ), we can compute the probability of particular values using the following formula:

•
$$Pr(X) = 1/\sigma\sqrt{2\pi} \cdot e^{(-(X-\mu)^2/(2\sigma^2))}$$

STANDARD NORMAL DISTRIBUTION

 The standard normal distribution is a normal distribution with a mean of zero and standard deviation of 1.

STUDENT T-DISTRIBUTION

- Student's t-distribution (or simply the t-distribution):
 - A member of a family of continuous probability distributions that arises when estimating the mean of a normally distributed population in situations where the sample size is small and population standard deviation is unknown.
 - Used by Student t-test, to construct confidence intervals, in linear regression analysis

Normal vs. binomial distribution

- What is the minimum required n for a binomial distribution with probability of success of 0.25 to closely follow a normal distribution?
- $n \ge 0.25 \ge 10 \rightarrow n \ge 10/0.25 \rightarrow n \ge 40$
- n×0.75≥10 → n ≥ 10/0.75 → n ≥ 13.33

Normal distribution

 A family doctor with ~ 3,000 subjects on the list measure over one year the heart rates (expected to be normal distributed). Three statistics were reported: mean = 75, minimum = 45, and maximum = 105.
 Which of the following is most likely to be the standard deviation of the distribution?

A.
$$2 \rightarrow 75 \pm 3 \times 2 = (69; 81)$$

B.
$$5 \rightarrow 75 \pm 3 \times 5 = (60; 90)$$

D.
$$12 \rightarrow 75 \pm 3 \times 12 = (39; 111)$$

E. $15 \rightarrow 75 \pm 3 \times 15 = (30; 120)$

RECALL!

- Normal distribution
 - can be used to describe a variety of variables
 - Is bell-shaped, unimodal, symmetric, and continuous; its mean, median, and mode are equal
 - Its standard form has a mean of 0 and a standard deviation of 1
 - Can be used to approximate other distributions to simplify the analysis of data

POINT ESTIMATORS & CONFIDENCE INTERVALS

INFERENTIAL STATISTICS

- Inferential statistics = the process of making guesses about the truth on the population by examining a sample extracted from the population
- Sample statistics = summary measures calculated from data belonging to a sample (e.g. mean, proportion, ratio, correlation coefficient, etc.)
- Population parameter = true value in the population of interest
- Point estimation involves the use of sample data to calculate a single value (known as a statistic) which is to serve as a "best guess" or "best estimate" of an unknown (fixed or random) population parameter.

POINT ESTIMATOR

- Point estimation provide one value as an estimate of the population parameter (e.g. the sample mean is a point estimator for population mean)
 - We are interested in the mean of height of 10-years-old boys and girls in the Romania. It would be impossible to measure the height of all 10-years-old boys and girls height so we will investigate a random sample of 30 boys and a random sample of 30 girls of 10-years-old. The sample mean for boys is 140 cm and for girls is 132 cm.
 - The sample mean of 140 cm is a point estimator of boys population mean
 - The sample mean of 132 cm is a point estimator of girls population mean

POINT ESTIMATOR VS. INTERVAL ESTIMATION

- Interval estimation: provide a range of values (an interval) that contain with a high probability the unknown parameter
- Confidence interval: the interval that contain an unknown parameter (such as the population mean) with certain degree of confidence
- It is recommended to estimate a theoretical parameter by using a range of value not a single value
 - It is called confidence interval
 - The estimated parameter belong to the confidence intervals with a high probability.

POINT ESTIMATOR VS. INTERVAL ESTIMATION

- Point estimator = one value obtained on a sample
 - How much uncertainty is associated with a point estimator of parameter?
- An interval provides more information about a population characteristics that does a point estimator confidence interval

Width of confidence interval

INTERVAL ESTIMATION

Point Estimator ± (Critical Value)×(Standard Error)

Margin of error

- The margin of error, and hence the width of the interval, gets smaller the as the sample size increases.
- The margin of error, and hence the width of the interval, increases and decreases with the confidence.

INTERVAL ESTIMATION

- Significance level $\alpha = 5\% \rightarrow 95\%$ confidence interval (CI)
- $CI = (1 \alpha) = 0.95$
- Interpretation:
 - If all possible samples of size *n* are extracted from the population and their means and intervals are estimated, 95% of all the intervals will include the true value of the unknown parameter
 - A specific interval either will contain or will not contain the true parameter (due to the 5% risk)

CONFIDENCE INTERVALS

• Provides:

- A plausible range of values for a population parameter.
- The precision of an point estimator.
 - When sampling variability is high, the confidence interval will be wide to reflect the uncertainty of the observation.
- Statistical significance.
 - If the 95% CI does not cross the null value, it is significant at 0.05.

CONFIDENCE INTERVALS

- Are calculated taking into consideration:
 - The sample or population size
 - The type of investigated variable (qualitative OR quantitative)
- Formula of calculus comprised two parts:
 - One estimator of the quality of sample based on which the population estimator was computed (standard error)
 - Standard error: is a measure of how good our best guess is.
 - Standard error: the bigger the sample, the smaller the standard error.
 - Standard error: is always smaller than the standard deviation
 - Degree of confidence (standard values)

CONFIDENCE INTERVALS FOR MEANS

• Assumptions:

- Population standard deviation (σ) is known
- Population is normally distributed

$$\left[\overline{X} - Z_{\alpha} \frac{\sigma}{\sqrt{n}}; \overline{X} + Z_{\alpha} \frac{\sigma}{\sqrt{n}}\right]$$

where Z is the normal distribution's critical value for a probability of $\alpha/2$ in each tail

- Consider a 95% confidence interval:
- $1 \alpha = 0.95 \& \alpha = 0.05 \& \alpha/2 = 0.025$

CONFIDENCE INTERVALS FOR MEANS

- Consider the distribution of serum cholesterol levels for all female Romanian who are hypertensive and overweight. This population has an unknown mean (μ) and a standard deviation (σ) of 30 mg/dl. We extracted from this population a random sample of 20 subjects and we found a mean of serum cholesterol level (X̄) equal with 220 mg/dl.
 - □ \overline{X} = 220 mg/dl is a point estimator of the unknown mean serum cholesterol level (µ) in the population
 - Because of the sampling variability, it is important to construct the interval able to take into account the sampling variability:

95%CI =
$$\left(220 - 1.96\frac{30}{\sqrt{20}}, 220 + 1.96\frac{30}{\sqrt{20}}\right) = (207, 233)$$

99%CI = $\left(220 - 2.58\frac{30}{\sqrt{20}}, 220 + 2.58\frac{30}{\sqrt{20}}\right) = (203, 237)$

Length =
$$233-207 = 26$$

CONFIDENCE INTERVALS FOR MEANS

 Unknown population mean (μ) & unknown population standard deviation (σ): student t-distribution with n-1 degree of freedom will be used

$$P\left(\overline{X} - t_{\alpha/2}\frac{s}{\sqrt{n}} \le \mu \le \overline{X} + t_{\alpha/2}\frac{s}{\sqrt{n}}\right) = 0.95$$

 A sample of 20 female students gave a mean weight of 60kg and a standard deviation of 8 kg. Assuming normality, find the 90, 95, and 99 percent confidence intervals for the population mean weight.

$$90\%CI = \left[60 - 1.73\frac{8}{\sqrt{20}}, 60 + 1.73\frac{8}{\sqrt{20}}\right] = [56.91, 63.09]$$
$$95\%CI = \left[60 - 2.09\frac{8}{\sqrt{20}}, 60 + 2.09\frac{8}{\sqrt{20}}\right] = [56.26, 63.74]$$
$$99\%CI = \left[60 - 2.86\frac{8}{\sqrt{20}}, 60 + 2.86\frac{8}{\sqrt{20}}\right] = [54.88, 65.12]$$

CONFIDENCE INTERVALS FOR MEANS DIFFERENCE

Population 1

Population 2

Estimate $(\mu_1 - \mu_2)$ with $\overline{X}_1 \overline{X}_2$

CONFIDENCE INTERVALS FOR MEANS DIFFERENCE

$$(\bar{X}_1 - \bar{X}_1) \pm t_{df} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

$$df = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_{12}}\right)^2}{\frac{1}{n_1 - 1}\left(\frac{s_1^2}{n_1}\right)^2 + \frac{1}{n_2 - 1}\left(\frac{s_2^2}{n_2}\right)^2}$$

Group 1	7	7	8	8	8	6	9	6	5
Group 2	8	10	9	6	10	8	9	7	8

	Group 1	Group 2		
Mean	7.11	8.33		
S	1.27	1.32		
S ²	1.61	1.75		

df=15.97 for $\alpha = 0.05$ $t_{15.97} = 2.13$ $(7.11 - 8.33) \pm 2.13\sqrt{0.18 + 0.19}$ $-1.22 \pm 2.13^{\circ}0.61$ -1.22 ± 1.30 [-2.52, 0.08]

CONFIDENCE INTERVALS

- Interpretation of CI for difference between two means
 - If 0 is contains by the confidence intervals, there is no significant difference between means.
 - If 0 is NOT contains by the confidence intervals, there is a significant difference between means.

COMPARING MEANS USING CONFIDENCE INTERVALS

http://www.biomedcentral.com/content/pdf/1471-2458-12-1013.pdf

Table 1 Living conditions of the MS-MV and the immigrant population (CASEN survey 2006)

	IMMIGRAN total sample, population (1 observations)	T POPULATION 1% n = 154 431 weighted 877 real	MS-MV GR sample, n = population (observations	OUP 0.67% total 108 599 weighted 1477 real
	% or mean	95% CI	% or mean	95% CI
DEMOGRAPHICS	_		_	
Mean age**	X=33.41	31.81-35.00	X = 26.13	23.41-28.26
Age categories:				
<16 years old**	13.60	11.29-16.28	45.25	39.53-51.10
16-65 years old**	79.08	75.92-81.93	47.26	41.64-52.94
>65 years old	7.32	5.33-9.97	7.49	5.31-10.46
Sex (female = 1)	45.21	41.74-48.72	51.27	47.99-55.41
Marital status:	•		•	
Single**	45.81	42.06-49.62	64.30	59.36-68.95
Married**	45.49	41.66-49.36	29.39	25.09-34.10

CONFIDENCE INTERVAL FOR FREQUENCY

Could be computed if:

$$\left[f - Z_{\alpha}\sqrt{\frac{f(1-f)}{n}}; f + Z_{\alpha}\sqrt{\frac{f(1-f)}{n}}\right]$$

- $n \times f > 10$, where n = sample size, f = frequency
- We are interested in estimating the frequency of breast cancer in women between 50 and 54 years with positive family history. In a randomized trial involving 10,000 women with positive history of breast cancer were found 400 women diagnosed with breast cancer.
- What is the 95% confidence interval associated frequently observed?

• f = 400/10000 = 0.04

$$\left[0.04 - 1.96\sqrt{\frac{0.04 \cdot 0.96}{10000}}; 0.04 + 1.96\sqrt{\frac{0.04 \cdot 0.96}{10000}}\right]$$

- [0.04-0.004; 0.04+0.004]
- [0.036; 0.044]

CONFIDENCE INTERVALS FOR OTHER ESTIMATORS

http://www.biomedcentral.com/content/pdf/1471-2458-12-1013.pdf

 Table 3 Odds Ratio (OR) of presenting any disability and any chronic condition or cancer, adjusted by different sets of factors separately (CASEN survey 2006)

	ANY DISABILITY				ANY CHRONIC CONDITION OR CANCER			
	International immigrants		MS-MV		International immigrants		MS-MV	
	OR	95% CI	OR	95% CI	OR	95% CI	OR	95% CI
DEMOGRAPHICS	·	•	·	·		•		
Age	1.04*	1.02-1.06	1.04*	1.02- 1.06	1.05*	1.02-1.08	1.02*	1.01-1.04
Sex (female = 1)	0.56	0.25-1.25	0.39*	0.20- 0.75	2.78**	1.26-6.71	1.05	0.46-2.36

FORMULAS!

One mean: population standard deviation is known

$$\left[\overline{X} - Z_{\alpha} \frac{\sigma}{\sqrt{n}}; \overline{X} + Z_{\alpha} \frac{\sigma}{\sqrt{n}}\right]$$

One mean: population standard deviation is not known

$$\left[m - t \frac{S}{n-1, 1-\frac{\alpha}{2}} \frac{S}{\sqrt{n}}; m + t \frac{S}{n-1, 1-\frac{\alpha}{2}} \frac{S}{\sqrt{n}}\right]$$

Difference between two means

$$((m_1 - m_2) - t_{critical} \times SE; (m_1 - m_2) + t_{critical} \times SE)$$
$$SE(m_1 - m_2) = \sqrt{\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}}$$

FORMULAS!

One frequency

$$\left[f - Z_{\alpha}\sqrt{\frac{f(1-f)}{n}}; f + Z_{\alpha}\sqrt{\frac{f(1-f)}{n}}\right]$$

Difference between two frequencies

$$(f_1-f_2) \pm Z_{critical} \times SE$$

SE = sqrt((f₁*(1-f₁)/n₁)+(f₂*(1-f₂)/n₂))

RECALL!

- Correct estimation of a population parameter is done with confidence intervals.
- Confidence intervals depend by the sample size and standard error.
- The confidence intervals is larger for:
 - High value of standard error
 - Small sample sizes

TESTING HYPOTHESIS

- Understand the principles of hypothesis-testing
- To be able to correctly interpret P values
- To know the steps needed in application of a statistical test

DEFINITIONS

- Statistical hypothesis test = a method of making statistical decisions using experimental data.
- A result is called statistically significant if it is unlikely to have occurred by chance.
- Statistical hypothesis = an assumption about a population parameter. This assumption may or may not be true.
- Clinical hypothesis = a single explanatory idea that helps to structure data about a given client in a way that leads to better understanding, decision-making, and treatment choice.

[Lazare A. The Psychiatric Examination in the Walk-In Clinic: Hypothesis Generation and Hypothesis Testing. Archives of General Psychiatry 1976;33:96-102.]

STATISTICAL TEST FREQUENTLY USED IN MEDICINE

- Parametric tests (quantitative normal distributed data):
 - T-test for dependent or independent samples (2 groups)
 - ANOVA (2 or more groups)

- Non-parametric tests (qualitative data – nominal or ordinal):
 - Chi-Square test
 - Fisher's exact test

Test for associations (quantitative & qualitative data):
 Correlation (Pearson & Spearman) & Regression (Linear & Logistic)

FROM PROBABILITY TO HYPOTHESIS

Population Parameters (μ, σ) Sample Statistics (m, s)

STEPS IN HYPOTHESIS TESTING Step 1: State hypothesis (H₀ and H₁/H_a)

Step 2: Choose the level of significance ($\alpha = 5\%$)

Step 3: Setting the rejection region

Step 4: Compute test statistic (e.g. Z_{test}) and get a pvalue

Step 5: Make a decision

• State the research question in terms of a statistical hypothesis

- <u>Null hypothesis (the hypothesis that is to be tested)</u>: abbreviated as H₀
 - Straw man: "Nothing interesting is happening"
- <u>Alternative hypothesis</u> (the hypothesis that in some sense contradicts the null hypothesis): abbreviated as H_a or H₁
 - What a researcher thinks is happening
 - May be one- or two-sided

• Hypotheses are in terms of population parameters!!!

One-sided	Two-sided
$H_0: \mu = 110$	$H_0: \mu = 110$
$H_{1/a}$: $\mu < 110 \text{ OR } H_{1/a}$: $\mu > 110$	H _{1/a} : μ ≠ 110

- Set decision criterion:
 - Decide what p-value would be "too unlikely"
 - This threshold is called the alpha level.
 - When a sample statistic surpasses this level, the result is said to be significant.
 - Typical alpha levels are 0.05 and 0.01.
- Alpha levels (level of significance) = probability of a type I error (the probability of rejecting the null hypothesis even that H0 is true)
- The probability of a type II error is the probability of accepting the null hypothesis given that H₁ is true. The probability of a Type II error is usually denoted by β.

- If we want to know where our sample mean lies in the null distribution, we convert X-bar to our test statistic $\rm Z_{test}$
- If an observed sample mean were lower than z=-1.65 then it would be in a critical region where it was more extreme than 95% of all sample means that might be drawn from that population

- State the test conclusion:
 - If our sample mean turns out to be extremely unlikely under the null distribution, maybe we should revise our notion of μ_{H0}
 - We never really "accept" the null hypothesis. We either reject it, or fail to reject it.

Thank you!

