Quantity of Information

1. How many bits can be stored on a CD of 700 MB ?

1 MB
1000*1000 byte
700 MB........................700*1000*1000* 8 bit $=5600000000$ bit
2. How many KiB can be stored on a CD of 800 MiB ?

1 MB 1000 kB
800 MB800*1000 kB $=800000$ kB
3. A book has on average 2500 characters per page. We know that a character is stored in a byte. How many book pages fit on a floppy disk 1440 kB? But on a 700 MB CD? But on a 4 GB DVD?

1 character \qquad 1 b

2500 characters 2500 b (one page)
1 kB \qquad 1000 B
1440 kB $1440 * 1000$ B= 1440000 B
144000 b / 2500 b = 576 pages
Similar for CD and DVD!
4. If a book of 220 pages is on average 2000 characters per page and a character is stored in a byte, what size should be the device needed to store 350 books?
b per one book $=220 * 2000=440000$
b per 350 books $=440000 * 350=154000000 \mathrm{~b}=154000 \mathrm{kB}=154 \mathrm{MB}$
5. How many characters per page has a book of 500 pages stored on a file of 1 MB (we know that one character is stored on 8 bytes)?
$1 \mathrm{MB}=1000000 \mathrm{~b}$
$1000000 / 500=2000$ b per page
1 character = 1 b -> 2000 words per page
6. How many books of 512 pages (2560 characters per page, a character is stored in a bite) can be stored on a CD of 700 MB ? But on 4 GB DVD?

512 pages * $2560 \mathrm{~b}=1310720 \mathrm{~b}=1311 \mathrm{kB}=1.31 \mathrm{MB}$ (one book)
$700(\mathrm{MB}): 1.31(\mathrm{MB})=534$ (books)
Similar for DVD!
7. How many medical images with the average size of 150 kB can be stored on a CD of 700 MB ? But on an 800 MB CD? But on a 4 GB DVD?
$150 \mathrm{kB}=0.15 \mathrm{MB}$
$700(\mathrm{MB}): 0.15(\mathrm{MB})=4667$ (images)
Similar for 800 MB CD \& 4 GB DVD!
8. Find the solution for the following operations:

```
\(120 \mathrm{kB}+120 \mathrm{kB}=240 \mathrm{kB}=240 * 1024\) (bytes) \(=245760\) bytes
\(200 \mathrm{kB}+1024 \mathrm{~B}=200 \mathrm{kB}+1 \mathrm{kB}=201 \mathrm{kB}\)
\(100 \mathrm{MB}+1000 \mathrm{kB}+1 \mathrm{~GB}=100 * 1024+1000+1 * 1024 * 1024=1151976 \mathrm{kB}\)
\(128 B+1020 o=128 B+1020 B=1148 B=1.12 k B\)
```

