Descriptive Statistics

1. The following data represent the hospitalization stay in days for a random sample from a flue epidemic source: 27, 33, 28, 27, 25, 31, 32, 34, 38, 41, 37, 22, 23, 27, 35, 25, 41, and 30.

- Which is the sample size?

Sample size $=18$

- Compute for the hospitalization stay the following statistics: mean, median, mode, variance, standard deviation and coefficient of variance.

Mean: $(27+33+28+27+25+31+32+34+38+41+37+22+23+27+35+25+41+30) / 18=30.89$
Median:
\div Sort the data ascending: $22\left(X_{1}\right), 23\left(X_{2}\right), 25\left(X_{3}\right), 25\left(X_{4}\right), 27\left(X_{5}\right), 27\left(X_{6}\right), 27\left(X_{7}\right), 28$ $\left(X_{8}\right), 30\left(X_{9}\right), 31\left(X_{10}\right), 32\left(X_{11}\right), 33\left(X_{12}\right), 34\left(X_{13}\right), 35\left(X_{14}\right), 37\left(X_{15}\right), 38\left(X_{16}\right), 41\left(X_{17}\right)$, 41 (X_{18})
\div Choose the formula: $\mathrm{Me}=\left(\mathrm{X}_{18 / 2}+\mathrm{X}_{18 / 2+1}\right) / 2=\left(\mathrm{X}_{9}+\mathrm{X}_{10}\right) / 2=(30+31) / 2=30.5$
Mode: 27
Variance: $s^{2}=\frac{S S}{n-1}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}$
$s 2=\left[(27-30.89)^{2}+(33-30.89)^{2}+(28-30.89)^{2}+(27-30.89)^{2}+(25-30.89)^{2}+(31-30.89)^{2}+(32-\right.$
$30.89)^{2}+(34-30.89)^{2}+(38-30.89)^{2}+(41-30.89)^{2}+(37-30.89)^{2}+(22-30.89)^{2}+(23-30.89)^{2}+(27-$
$\left.30.89)^{2}+(35-30.89)^{2}+(25-30.89)^{2}+(41-30.89)^{2}+(30-30.89)^{2}\right] /(18-1)=34.69$
Standard deviation: $s=\sqrt{s^{2}}=\sqrt{\frac{S S}{n-1}}=\sqrt{\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}{n-1}}$
$S=\operatorname{sqrt}(34.69)=6($ where sqrt $=\sqrt{ })$
Coefficient of variance: $\mathrm{CV}=\frac{\mathrm{S}}{\overline{\mathrm{X}}}$
$C V=6 / 30.89=0.19$

- Based on the value of coefficient of variation specify the homogeneity of the series.

Since the $10 \leq C V<20$ the series is relative homogenous

- Compute the quartiles for this series. What can be saying about the symmetry of the data?

$$
\text { Q1 = } 27
$$

Q2 $=30.5$
Q3 $=34.75$
Q2-Q1 $=3.5$
Q3-Q2 $=4.25$

Since Q3-Q2 ~ Q2-Q1 the data could be symmetrical.
2. The following data represent the age (in years) at which the infection with HIV was diagnosis on a sample of 27 randomly selected cases:
$39,50,26,45,71,51,33,40,40,51,66,63,55,36,57,41,61,47,44,48,59,42,54$, $47,53,54,47$

- Compute with a precision of two decimals the following statistics:(i) median; (ii) mode; (iii) mean; (iv) central value; (v) amplitude; (vi) variation; (viii) coefficient of variation; (vii) standard deviation.
(i) Median
- Arrange data ascending
$26\left(X_{1}\right), 33\left(X_{2}\right), 36\left(X_{3}\right), 39\left(X_{4}\right), 40\left(X_{5}\right), 40\left(X_{6}\right), 41\left(X_{7}\right), 42\left(X_{8}\right), 44\left(X_{9}\right), 45\left(X_{10}\right), 47\left(X_{11}\right), 47\left(X_{12}\right), 47$ $\left(X_{13}\right), 48\left(X_{14}\right), 50\left(X_{15}\right), 51\left(X_{16}\right), 51\left(X_{17}\right), 53\left(X_{18}\right), 54\left(X_{19}\right), 54\left(X_{20}\right), 55\left(X_{21}\right), 57\left(X_{22}\right), 59\left(X_{23}\right), 61\left(X_{24}\right), 63$ $\left(X_{25}\right), 66\left(X_{26}\right), 71\left(X_{27}\right)$
- N is odd (27)
- Me: $\mathrm{X}_{n+1} / 2 \rightarrow \mathrm{X}_{27+1} / 2 \rightarrow \mathrm{X}_{28} / 2 \rightarrow \mathrm{X}_{14} \rightarrow 48$
- $M e=48$
(ii) \quad Mode $=47$
$26,33,36,39,40,40,41,42,44,45,47,47,47,48,50,51,51,53,54,54,55,57,59,61,63,66,71$
(iii) Mean = $(26+33+36+39+40+40+41+42+44+45+47+47+47+48+50+51+51+53+54+54+55+57+59+61+63+$ $66+71) / 27=48.89$
(iv) \quad central value $=\left(X_{\text {min }}+X_{\text {max }}\right) / 2=(26+71) / 2=48.5$
(v) amplitude $=\left(X_{\text {max }}-\mathrm{X}_{\text {min }}\right) / 2=(71-26) / 2=22.5$
(vi) \quad variation $=\left((26-48.88)^{2}+(33-48.88)^{2}+(36-48.88)^{2}+(39-48.88)^{2}+(40-48.88)^{2}+(40-48.88)^{2}+\right.$ $(41-48.88)^{2}+(42-48.88)^{2}+(44-48.88)^{2}+(45-48.88)^{2}+(47-48.88)^{2}+(47-48.88)^{2}+(47-48.88)^{2}+$ $(48-48.88)^{2}+(50-48.88)^{2}+(51-48.88)^{2}+(51-48.88)^{2}+(53-48.88)^{2}+(54-48.88)^{2}+(54-48.88)^{2}+$ $(55-48.88)^{2}+(57-48.88)^{2}+(59-48.88)^{2}+(61-48.88)^{2}+(63-48.88)^{2}+(66-48.88)^{2}+(71-$ $\left.48.88)^{2}\right) /(27-1)=106.56$
(vii) coefficient of variation $=\operatorname{sqrt}($ variance $) / \mathrm{m}=\operatorname{sqrt}(106.56) / 48.89=0.2111$
(viii) standard deviation $=$ sqrt(variance) $=10.32$
- How many observation will be contain in the following ranges:
i. $\overline{\mathrm{X}} \pm 1 \cdot \mathrm{~s}:(48.89-10.32)(48.89+10.32) \rightarrow$ range of $(38.57-59.21) \rightarrow 20$ observations $\rightarrow 74 \%$ of the observations
ii. $\overline{\mathrm{X}} \pm 2 \cdot \mathrm{~s}:\left(48.89-2^{*} 10.32\right)\left(48.89+2^{*} 10.32\right) \rightarrow$ range of $(28.25-69.53) \rightarrow 25$ observations $\rightarrow 92.59 \%$ of the observations
iii. $\bar{X} \pm 3 \cdot S:\left(48.89-3^{*} 10.32\right)-\left(48.89+3^{*} 10.32\right) \rightarrow$ range of $(17.93-79.85) \rightarrow 27$ observations $\rightarrow 100 \%$ of the observations
- Specify the level of homogeneity (or heterogeneity) of the sample.

Since the CV $=0.2111$ the series is relative hererogenous.

- Assess the symmetry of distribution of data using quartiles.

Q1 $=41.5$
Q2 $=48$
Q3 $=54.4$
$(\mathrm{Q} 2-\mathrm{Q} 1)=6.5$
$(\mathrm{Q} 3-\mathrm{Q} 2)=6.5$
Since (Q2 - Q1) = (Q3 - Q2) the series is symmetrical
3. Compute the following statistics for the sample of days of incubation:

$$
7,3,5,7,10,6,8,4,5,3,7,6,5,4,8,8,7,10,12,3,2,5,6,7,8
$$

- Mean $=(7+3+5+7+10+6+8+4+5+3+7+6+5+4+8+8+7+10+12+3+2+5+6+7+8) / 25=6.24$
- Median
$2\left(X_{1}\right), 3\left(X_{2}\right), 3\left(X_{3}\right), 3\left(X_{4}\right), 4\left(X_{5}\right), 4\left(X_{6}\right), 5\left(X_{7}\right), 5\left(X_{8}\right), 5\left(X_{9}\right), 5\left(X_{10}\right), 6\left(X_{11}\right), 6\left(X_{12}\right), 6\left(X_{13}\right), 7$ $\left(\mathrm{X}_{14}\right), 7\left(\mathrm{X}_{15}\right), 7\left(\mathrm{X}_{16}\right), 7\left(\mathrm{X}_{17}\right), 7\left(\mathrm{X}_{18}\right), 8\left(\mathrm{X}_{19}\right), 8\left(\mathrm{X}_{20}\right), 8\left(\mathrm{X}_{21}\right), 8\left(\mathrm{X}_{22}\right), 10\left(\mathrm{X}_{23}\right), 10\left(\mathrm{X}_{24}\right), 12\left(\mathrm{X}_{25}\right)$
- N is odd (25)
- Me: $\mathrm{X}_{\mathrm{n}+1} / 2 \rightarrow \mathrm{X}_{25+1} / 2 \rightarrow \mathrm{X}_{26} / 2 \rightarrow \mathrm{X}_{13} \rightarrow 6$
- $\mathrm{Me}=6$
- \quad Mode $=7$
- Amplitude $=\left(\mathrm{X}_{\text {max }}-\mathrm{X}_{\text {min }}\right) / 2=(12-2) / 2=5$
- Standard deviation

Variance $=\left((7-6.24)^{2}+(3-6.24)^{2}+(5-6.24)^{2}+(7-6.24)^{2}+(10-6.24)^{2}+(6-6.24)^{2}+(8-6.24)^{2}+(4-\right.$ $6.24)^{2}+(5-6.24)^{2}+(3-6.24)^{2}+(7-6.24)^{2}+(6-6.24)^{2}+(5-6.24)^{2}+(4-6.24)^{2}+(8-6.24)^{2}+(8-6.24)^{2}$ $+(7-6.24)^{2}+(10-6.24)^{2}+(12-6.24)^{2}+(3-6.24)^{2}+(2-6.24)^{2}+(5-6.24)^{2}+(6-6.24)^{2}+(7-6.24)^{2}+$ $\left.(8-6.24)^{2}\right) /(25-1)=5.94$

Standard deviation $=\operatorname{sqrt}($ variance $)=2.44$

- \quad Standard error $=($ standard deviation $) /(\operatorname{sqrt}(n))=2.44 /(\operatorname{sqrt}(25))=0.49$
- Coefficient of variation. Give the interpretation of the obtained value.

CV $=($ standard deviation $) /($ arithmetic mean $)=2.44 / 6.24=0.3910$
The series is heterogeneous.

- $Q_{1}(25), Q_{2}(50), Q_{3}(75)$.
$Q_{1}=5$
$\mathrm{Q}_{2}=6$
$Q_{3}=8$
$Q_{2}-Q_{1}=6-5=1$
$Q_{3}-Q_{2}=8-6=2$
Since $Q_{3}-Q_{2}$ is different by $Q_{2}-Q_{1}$ the series is not symmetrical.

