RANDOM EXPERIMENTS AND Random Variables

Sorana D. Bolboacă

ObJECTIVES

- Random experiment
- Random variables

Binomial Random Processes

- Two possible outcomes
- Heads or tails
- Make basket or miss basket
- Fatality, no fatality
- With probability p (or 1-p)

Binomial Random Processes

- Predicting a specific versus a general pattern
- Which lotto ticket would you buy?
- Equally likely (or unlikely) to win:
- 264587291
- 2626262626 - less likely to be bought
- Each specific ticket is equally (un)likely to win
- A ticket that "looks like" ticket A (with alternating values) is more likely than one that "looks like" ticket B (with identical values).

Binomial Random Processes

- Probabilities for specific patterns get smaller as you run more tests
- What is the probability of getting heads on the second test and the tails on all other trials?
- $\mathrm{P}(\mathrm{T}, \mathrm{H})=0.25$
- $\mathrm{P}(\mathrm{T}, \mathrm{H}, \mathrm{T})=0.125$
- $\mathrm{P}(\mathrm{T}, \mathrm{H}, \mathrm{T}, \mathrm{T})=0.0625$

Binomial Random Processes

- What is the probability of getting at least one heads when you toss a coin multiple times?
- Two tosses: $\operatorname{Pr}(\mathrm{HT}$ or TH or HH$)=0.75$
- Three tosses: Pr(HTT or THT or TTH or THH or HHT or HHH) $=0.875$
- Four tosses: 0.9375

DEFINITION

- Let X be a quantitative variable measured or observed from an experiment
- The value of X is a random variable
- Example:
- Number of red cells in blood
- Number of bacteria from the students hands
- Average of depression score obtained from the application of a test on a sample of patients with malign tumors

Random Variables

- Arithmetic mean
- Standard deviation
- Proportion
- Frequency
- All are random variables

Types of Random Variables

Discrete:

- Can take a finite number of values
- The number of peoples with RH- from a sample
- The number of children with flue from a collectivity
- The number of anorexic students from university
- Pulse

Continuous:

- Can take an infinite number of values into a defined range
- Vary continuously in defined range
- Body temperature
- Blood sugar concentration
- Blood pressure

Types of Random Variables

- Generally, means are continuous random variables and frequencies are discrete random variables
- Examples:
- The mean of lung capacity of a people who work in coal mine
- The number of patients with chronic B hepatitis hospitalized in Cluj-Napoca between 01/1105/11/2008.

RANDOM VARIABLE

- A random variable
- is a quantification of a probability model that allows to model random data
- Is a quantity that may take any value of a given range that cannot be predicted exactly but can be described in terms of their probability
- Discrete: generally assessed by counting
- Continuous: generally assessed by measurements

RANDOM VARIABLE

- When throwing a die with 6 faces, let X be the random variable defined by:

$$
\mathrm{X}=\text { the square of the scores shown on the die }
$$

What is the expectation of X ?

Solution:

- $S=\left\{1,2^{2}, 3^{2}, 4^{2}, 5^{2}, 6^{2}\right\}=\{1,4,9,16,25,36\}$
- Each face has a probability of $1 / 6$ of occurring, so: $\mathrm{E}(\mathrm{X})=1^{*} 1 / 6+4^{*} 1 / 6+6^{*} 1 / 6+16^{*} 1 / 6+25^{*} 1 / 6+36^{*} 1 / 6=91^{*} 1 / 6$

Random Variables

- Outcome of an experiment \rightarrow a quantitative or a qualitative data
- A random variable is a function that assign a unique numerical value to each outcome of an experiment along with an associated probability.
- Discrete random variable corresponds to an experiment that has a finite or countable number of outcomes.
- A continuous random variable is a random variable for which the set of possible outcomes is continuous

Random Variables

- Discrete random variable: take a finite discrete value
- Infinite number of values
- Number of hospitalization stay: $\mathrm{X}=\{0,1,2, \ldots, \mathrm{n}, \ldots\}$
- Number of bacteria: $\mathrm{X}=\{0,1,2, \ldots, \mathrm{n}, \ldots\}$
- Finite number of values
- Number of A blood group in a sample of subjects: $\mathrm{X}=$ $\{0,1,2, \ldots, n\}$
- Continuous random variable: random variable where the data can take infinitely many values
- Infinite number of values

Discrete Probability Distributions

- Probability Distribution: symbols

- Property: the probabilities that appear in distribution of a finite random variable verify the formula:
$\sum_{i=1}^{n} \operatorname{Pr}\left(x_{i}\right)=1$

Discrete Probability Distributions

- The mean of discrete probability distribution (called also expected value) is give by the formula:

$$
M(x)=\sum_{i=1}^{n} x_{i} \cdot \operatorname{Pr}\left(x_{i}\right)
$$

- Represents the weighted average of possible values, each value being weighted by its probability of occurrence.
- Variance: is a weighted average of the squared deviations in X

$$
V(x)=\sum_{i=1}^{n}\left(x_{i}-M(x)\right)^{2} \cdot \operatorname{Pr}\left(x_{i}\right)
$$

- Standard deviation:

$$
\sigma(x)=\sqrt{V(x)}=\sqrt{\sum_{i=1}^{n}\left(x_{i}-M(x)\right)^{2} \cdot \operatorname{Pr}\left(x_{i}\right)}
$$

Discrete Probability Distributions

Example: Let x be a random variable represented by the number of otitis episodes in the first two years of life in a community. This random variable has the following distribution:
$X:\left(\begin{array}{ccccccc}0 & 1 & 2 & 3 & 4 & 5 & 6 \\ 0.129 & 0.264 & 0.271 & 0.185 & 0.095 & 0.039 & 0.017\end{array}\right)$
What is the expected number (average) of episodes of otitis during the first two years of life?

Discrete Probability Distributions

- What is the expected number (average) of episodes of otitis during the first two years of life?

$$
\mathrm{X}:\left(\begin{array}{ccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 \\
0.129 & 0.264 & 0.271 & 0.185 & 0.095 & 0.039 & 0.017
\end{array}\right)
$$

- $\mathrm{M}(x)=0 \cdot 0.129+1 \cdot 0.264+2 \cdot 0.271+3 \cdot 0.185+4 \cdot 0.095+$ $5 \cdot 0.039+6 \cdot 0.017$
- $\mathrm{M}(x)=0+0.264+0.542+0.555+0.38+0.195+0.102$
- $\mathrm{M}(\mathrm{x})=2.038$

Discrete Probability Distributions

x_{i}	$\operatorname{Pr}\left(\mathrm{x}_{\mathrm{i}}\right)$	$\mathrm{x}_{\mathrm{i}} * \operatorname{Pr}\left(\mathrm{x}_{\mathrm{i}}\right)$	$\mathrm{x}_{\mathrm{i}}-\mathrm{M}(\mathrm{x})$	$\left(\mathrm{x}_{\mathrm{i}}-\mathrm{M}(\mathrm{x})\right)^{2}$	$\left(\mathrm{x}_{\mathrm{i}}-\mathrm{M}(\mathrm{x})\right)^{2} * \operatorname{Pr}\left(\mathrm{x}_{\mathrm{i}}\right)$
0	0.129	0	-2.038	4.153	0.536
1	0.264	0.264	-1.038	1.077	0.284
2	0.271	0.542	-0.038	0.001	0.000
3	0.185	0.555	0.962	0.925	0.171
4	0.095	0.38	1.962	3.849	0.366
5	0.039	0.195	2.962	8.773	0.342
6	0.017	0.102	3.962	15.697	0.267

Discrete Probability Distributions By Examples

- Bernoulli: head versus tail (two possible outcomes)
- Binomial: number of 'head' obtained by throwing a coin of n times
- Poisson: number of patients consulted in a emergency office in one day

BERNOULLI DISTRIBUTION

- A random variable whose response are dichotomous is called a Bernoulli random variable
- The experiment has just two possible outcomes (success and failure - dichotomial variable):
- Gender: boy or girl
- Results of a test: positive or negative
- Probability of success = p
- Probability of failure = 1-p

- Mean of $X: M(x)=1 \cdot p+0 \cdot(1-p)$
- Variance of $X: V(x)=p \cdot(1-p)$

BInOMIAL DISTRIBUTION

- An experiment is given by repeating a test of n times ($n=$ known natural number).
- The possible outcomes of each attempt are two events called success and failure
- Let noted with p the probability of success and with q the probability of failure ($q=1-p$)
- The n repeated tests are independent
- In a binomial experiment:
- It consists of a fixed number n of identical experiments
- There are only two possible outcomes in each experiments, denoted by S (success) and F (failure)
- The experiments are independent with the same probability of S (denoted p)
- ${ }_{4} \mathrm{C}_{2}=4$ choose 2 (combination choosing 2 from 4)

BINOMIAL DISTRIBUTION

Mean	$\mathbf{M}(\mathbf{x})=\mathbf{n} \cdot \mathbf{p}$
Variance	$\mathrm{V}(\mathrm{x})=\mathrm{n} \cdot \mathrm{p} \cdot \mathrm{q}$
Standard deviation	$\sigma(x)=\sqrt{ }(\mathrm{n} \cdot \mathrm{p} \cdot \mathrm{q})$

- The number of successes X obtained by performing the test n times is a random variable of n and p parameters and is noted as $\operatorname{Bi}(\mathrm{n}, \mathrm{p})$
- The random variable X can take the following values: $0,1,2, \ldots n$
- Probability that X to be equal with a value k is given by the formula:

$$
\operatorname{Pr}(X=k)=C_{n}^{k} p^{k} q^{n-k}
$$

where:

$$
\mathrm{C}_{\mathrm{n}}^{\mathrm{k}}=\frac{\mathrm{n}!}{\mathrm{k}!\cdot(\mathrm{n}-\mathrm{k})!}
$$

BINOMIAL DISTRIBUTION

- Suppose that 90% of adults with joint pain report symptomatic relief with a specific medication. If the medication is given to 10 new patients with joint pain, what is the probability that it is effective in exactly 7 subjects?
- Assumptions of the binomial distribution model?
- The outcome is pain relief (yes or no), and we will consider that the pain relief is a success
- The probability of success for each subject is 0.9 ($\mathrm{p}=0.9$)
- The final assumption is that the subjects are independent, and it is reasonable to assume that this is true.
- $\operatorname{Pr}(\mathrm{x}=7)={ }_{10} \mathrm{C}_{7} \cdot 0.9^{7} \cdot(1-0.9)^{10-7}=0.0574 \rightarrow$ there is a 5.74% chance that exactly 7 of 10 patients will report pain relief when the probability that any one reports relief is 90%.

BINOMIAL DISTRIBUTION $\quad \operatorname{Pr}(x=k)=C_{n}^{k} p^{k} q^{n-k}$

- What is the probability to have 2 boys in a family with 5 children if the probability to have a baby-boy for each birth is equal to 0.47 and if the sex of children successive born in the family is considered an independent random variable?
- $\mathrm{p}=0.47$
- $\mathrm{q}=1-0.47=0.53$
- $\mathrm{n}=5$
- $\mathrm{k}=2$
- $\operatorname{Pr}(x=2)=10 \cdot 0.47^{2} \cdot 0.53^{3}$
- $\operatorname{Pr}(x=2)=0.33$

$$
C_{5}^{2}=\frac{5!}{2!\cdot(5-2)!}=\frac{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{2 \cdot 1 \cdot(3 \cdot 2 \cdot 1)}=\frac{120}{12}=10
$$

PoISSON DISTRIBUTION

- Random Poisson variable take a countable infinity of values ($0,1,2, \ldots, \mathrm{k}, \ldots$) that is the number of achievements of an event within a given range of time or place
- number of entries per year in a given hospital
- white blood cells on smear
- number of decays of a radioactive substance in a given time T

PoISSON DISTRIBUTION

- POISSON random variable:
- Is characterized by theoretical parameter θ (expected average number of achievement for a given event in a given range)
- Symbol: $\operatorname{Po}(\theta)$
- Poisson Distribution:

$$
X:\binom{k}{e^{-\theta} \cdot \frac{\theta^{k}}{k!}}
$$

$$
\operatorname{Pr}(x=k)=\frac{e^{-\theta} \cdot \theta^{k}}{k!}
$$

- Mean of expected values: $M(x)=\theta$
- Variance: $\mathrm{V}(\mathrm{x})=\theta$

PoISSON DISTRIBUTION

- The mortality rate for specific viral pathology is 7 per 1000 cases. What is the probability that in a group of 400 people this pathology to cause 5 deaths?
- $\mathrm{n}=400$
- $\mathrm{p}=7 / 1000=0.007$
- $\theta=n \cdot p=400 \cdot 0.007=2.8$
- $e=2.718281828=2.72$

$$
\begin{aligned}
& \operatorname{Pr}(\mathrm{x}=5)=\left(2.72^{\left.-2.8 \cdot 2.8^{5}\right) /(5 \cdot 4 \cdot 3 \cdot 2 \cdot 1)=10.45 / 120}\right. \\
& \operatorname{Pr}(\mathrm{X}=5)=0.09
\end{aligned}
$$

Recall

- Random variables could be discrete or continuous.

■ For random variables we have:

- Discrete probability distributions
- Continuous probability distribution
- It is possible to compute the expected values (means), variations and standard deviation for discrete and random variables.

Thank you!

