REMEMBER:

$>$ The name of the files and sheets must be strictly followed.

Probability of a event

Let A = \{birth of a male child $\}$
$\operatorname{Pr}(\mathrm{A})=$ (number of favorable cases) $/($ number of possible cases)
Probability of the event A is:

$$
\operatorname{Pr}(A)=\frac{\text { Number of favorable cases }}{\text { Number of possible cases }},
$$

where number of favorable cases is given by those who accomplished the required criterion (e.g. birth of a male child).

Probability of nonA

The probability that something happens is one minus the probability that it does not:
$\operatorname{Pr}(\mathrm{A})=\mathbf{1}-\operatorname{Pr}($ nonA $)$

$\operatorname{Pr}(\mathbf{A}$ sau $B)=\operatorname{Pr}(\mathbf{A} \cup B)$

$\operatorname{Pr}(A \cup B)=\operatorname{Pr}(A)+\operatorname{Pr}(B)-\operatorname{Pr}(A \cap B)$.

Independent events

If two events A and B are independent: $\operatorname{Pr}(A \cap B)=\operatorname{Pr}(A) \cdot \operatorname{Pr}(B)$.

Probabilities applications

1. Prevalence = probability that a subject to have Alzheimer. Use the data from GoldenTest column to answer this question
2. Sensibility $(\mathrm{Se}=\operatorname{Pr}(\mathrm{T} \mid \mathrm{A}))=$ probability that a test result will be positive when the Alzheimer is present. The following events are used in this formula: $\mathrm{T}=$ \{Alzheimer test positive $\}$ and $\mathrm{A}=$ \{Alzheimer positive $=$ Golden test positive $\}$
3. Specificity $(\mathrm{Sp}=\operatorname{Pr}($ nonT \mid nonA $))=$ probability that a test result will be negative when the Alzheimer is not present
4. Positive predictive value $(\operatorname{PPV}=\operatorname{Pr}(\mathrm{A} \mid \mathrm{T}))=$ probability that the Alzheimer is present when the test is positive.
5. Negative predictive value $(N P V=\operatorname{Pr}($ non $A \mid$ nonT $)$): probability that the Alzheimer is not present when the test is negative.

Working with contingency tables in Excel

- Select one cell of the table with data (e.g. A2) \rightarrow the whole database it will be selected.
- [Insert-PivotTable]. The next window will appear :

- Validate with OK.

- Using drag-and-drop option place GoldenStandard on Column and Test1 on Row Label. Drag-and-drop again the GoldenTest on Value. The resulted selection is similar with the one in the image bellow:

!!! Check if the total is equal with the sample size!!!!
- Use sort option to have in the first column the positive values:

- Copy the contingency table in empty cells and change it to look as the one in the image bellow:

L	M	N	O
	Altzheimer=positive	Altzheimer=negative	Grand Total
	99	184	283
Gender=female	25	192	217
Gender=male	124	376	500
Grand Total			

- Compute the relative risk for gender using the formula:

$$
\mathbf{R R}=\frac{a /(a+b)}{c /(c+d)}
$$

- $\operatorname{RR}=(99 / 283) /(25 / 217)$

L	M	N	0
	Altzheimer=positive	Altzheimer=negative	Grand Total
Gender=female	99	184	283
Gender=male	25	192	217
Grand Total	124	376	500
RR	=(M13/O13)/(M14/O1		

- Interpret the obtained results using the following rules:
- $\quad \mathrm{RR} \sim 1 \rightarrow$ association between exposure and disease unlikely to exist.
- $R R \gg 1 \rightarrow$ increased risk of disease among those that have been exposed.
- $\mathrm{RR} \ll 1 \rightarrow$ decreased risk of disease among those that have been exposed

L	M	N	0
	Altzheimer=positive	Altzheimer=negative	Grand Total
Gender=female	99	184	283
Gender=male	25	192	217
Grand Total	124	376	500
RR	3 Since RR = $3 \rightarrow$ gender is a risk factor for Alzheimer		

