## DESCRIPTIVE STATISTICS

## Median:

| $\mathbf{n}=$ odd | $\mathrm{n}=$ even |  |
| :--- | :--- | :---: |
| $\mathrm{Me}=\mathrm{X}_{\frac{\mathrm{n}+1}{2}}$ | $\mathrm{X}_{\frac{\mathrm{n}}{}}+\mathrm{X}_{\frac{\mathrm{n}}{2}+1}$ |  |
|  | $\mathrm{Me}=\frac{2}{2}$ |  |

Mean:

| Population | Sample |
| :--- | :--- |
| $\mu=\frac{\sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{X}_{\mathrm{i}}}{\mathrm{N}}$ | $\bar{X}=\frac{\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{X}_{\mathrm{i}}}{\mathrm{n}}$ |

Central value: Central value $=\left(\mathrm{X}_{\text {max }}+\mathrm{X}_{\text {min }}\right) / 2$

| Skewness | Kurtosis |
| :--- | :--- |
| $\mathrm{M}_{3}=\frac{\sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{X}_{\mathrm{i}}-\overline{\mathrm{X}}\right)^{3}}{\mathrm{n}}$ | $\alpha_{4}=\frac{\frac{1}{\mathrm{n}} \sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{X}_{\mathrm{i}}-\overline{\mathrm{X}}\right)^{4}}{\mathrm{~S}^{4}}-3$ |

Amplitude (Range): $\mathrm{R}=\mathrm{X}_{\text {max }}-\mathrm{X}_{\text {min }}$
Mean of deviation:

| From the mean | From the median |
| :---: | :---: |
| $R_{\bar{x}}=\frac{\sum_{i=1}^{n}\left\|X_{i}-\bar{X}\right\|}{n}$ | $R_{M e}=\frac{\sum_{i=1}^{n}\left\|X_{i}-M e\right\|}{n}$ |

Variance:

| Population | Sample |
| :--- | :--- |
| $\sigma^{2}=\frac{\mathrm{SS}}{\mathrm{N}}=\frac{\sum_{\mathrm{i}=1}^{\mathrm{N}}\left(\mathrm{X}_{\mathrm{i}}-\overline{\mathrm{X}}\right)^{2}}{\mathrm{~N}}$ | $\mathrm{~s}^{2}=\frac{\mathrm{SS}}{\mathrm{n}-1}=\frac{\sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{X}_{\mathrm{i}}-\overline{\mathrm{X}}\right)^{2}}{\mathrm{n}-1}$ |

Standard deviation:
$\mathrm{s}=\sqrt{\mathrm{s}^{2}}=\sqrt{\frac{\mathrm{SS}}{\mathrm{n}-1}}=\sqrt{\frac{\sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{X}_{\mathrm{i}}-\overline{\mathrm{X}}\right)^{2}}{\mathrm{n}-1}}$
Standard error: $\mathrm{ES}=\frac{\mathrm{s}}{\sqrt{\mathrm{n}}}$
Coefficient of variance: $C V=\frac{s}{\bar{X}}$

## Probabilities

$\operatorname{Pr}(\mathrm{A})=$ (number of favourable cases) $/($ number of possible cases)

Sensibility: $\mathrm{Se}=\operatorname{Pr}(\mathrm{B} \mid \mathrm{A})$
where $\operatorname{Pr}(\mathrm{B})=$ probability of a positive test; $\operatorname{Pr}($ non $B)=$ probability of a no positive test $; \operatorname{Pr}(\mathrm{A})=$ probability of existence of a certain disease; $\operatorname{Pr}($ nonA $)=$ probability of non existence of a certain disease. Specificity: $\mathrm{Sp}=\operatorname{Pr}($ nonB $\mid$ nonA $)$
Positive predictive value: $\mathrm{PPV}=\operatorname{Pr}(\mathrm{A} \mid \mathrm{B})$
Negative predictive value: $\mathrm{NPV}=\operatorname{Pr}($ non $A \mid$ non $B)$
False positive rate: $\mathrm{RFP}=\operatorname{Pr}(\mathrm{B} \mid$ non A$)$
False negative rate: $R F N=\operatorname{Pr}($ nonA $\mid B)$
Addition rules: $\operatorname{Pr}(\mathrm{A} \cup \mathrm{B})=\operatorname{Pr}(\mathrm{A})+\operatorname{Pr}(\mathrm{B})-\operatorname{Pr}(\mathrm{A} \cap \mathrm{B})$
Addition rule for mutually exclusive events:
$\operatorname{Pr}(\mathrm{A} \cup \mathrm{B})=\operatorname{Pr}(\mathrm{A})+\operatorname{Pr}(\mathrm{B})$
Multiplication rules: $\operatorname{Pr}(\mathrm{A} \cap \mathrm{B})=\operatorname{Pr}(\mathrm{A}) \cdot \operatorname{Pr}(\mathrm{B} \mid \mathrm{A})$
Multiplication rule for independent events:
$\operatorname{Pr}(\mathrm{A} \cap \mathrm{B})=\operatorname{Pr}(\mathrm{A}) \cdot \operatorname{Pr}(\mathrm{B})$
BAYES Formula:
$\operatorname{Pr}(\mathrm{A} \mid \mathrm{B})=\frac{\operatorname{Pr}(\mathrm{B} \mid \mathrm{A}) \cdot \operatorname{Pr}(\mathrm{A})}{\operatorname{Pr}(\mathrm{B} \mid \mathrm{A}) \cdot \operatorname{Pr}(\mathrm{A})+\operatorname{Pr}(\mathrm{B} \mid \overline{\mathrm{A}}) \cdot \operatorname{Pr}(\overline{\mathrm{A}})}$

## RANDOM VARIABLE

Mean = expected value:
$\mathrm{M}(\mathrm{X})=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{X}_{\mathrm{i}} \cdot \operatorname{Pr}\left(\mathrm{X}_{\mathrm{i}}\right)$
Variance:

$$
\mathrm{V}(\mathrm{X})=\sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{X}_{\mathrm{i}}-\mathrm{M}(\mathrm{X})\right)^{2} \cdot \operatorname{Pr}\left(\mathrm{X}_{\mathrm{i}}\right)
$$

Standard deviation:
$\sigma(\mathrm{X})=\sqrt{\mathrm{V}(\mathrm{X})}=\sqrt{\sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{X}_{\mathrm{i}}-\mathrm{M}(\mathrm{X})\right)^{2} \cdot \operatorname{Pr}\left(\mathrm{X}_{\mathrm{i}}\right)}$
$\chi^{2}=\sum_{i=1}^{\text {r.c } c} \frac{\left(f_{i}^{0}-f_{i}^{t}\right)^{2}}{f_{i}^{t}}$

## BINOMIAL RANDOM VARIABLES

Binomial DISTRIBUTION:
$\operatorname{Pr}(\mathrm{X}=\mathrm{k})=\mathrm{C}_{\mathrm{n}}^{\mathrm{k}} \mathrm{p}^{\mathrm{k}} \mathrm{q}^{\mathrm{n}-\mathrm{k}}$ where $\mathrm{C}_{\mathrm{n}}^{\mathrm{k}}=\frac{\mathrm{n}!}{\mathrm{k}!(\mathrm{n}-\mathrm{k})!}$
Mean: $M(X)=n \cdot p$
Variance: $\mathrm{V}(\mathrm{X})=\mathrm{n} \cdot \mathrm{p} \cdot \mathrm{q}$
Standard: $\sigma(X)=\sqrt{V(X)}=\sqrt{n \cdot p \cdot q}$

POISSON RANDOM VARIABLE
$X:\binom{k}{e^{-\theta} \cdot \frac{\theta^{k}}{k!}} \operatorname{Pr}(X=k)=\frac{e^{-\theta} \cdot \theta^{k}}{k!}$
$\mathrm{e}=2.718281828 ; \theta=\mathrm{n} \cdot \mathrm{p}(\mathrm{n}=$ sample size, $\mathrm{p}=$ probability of the apparition of an event).

## CONFIDENCE LEVELS

Mean: $\left[\overline{\mathrm{X}}-\mathrm{Z}_{\alpha} \frac{\mathrm{s}}{\sqrt{\mathrm{n}}}, \overline{\mathrm{X}}+\mathrm{Z}_{\alpha} \frac{\mathrm{s}}{\sqrt{\mathrm{n}}}\right]$
Frequency: $\left[f-Z_{\alpha} \sqrt{\left.\frac{f(-f)}{n} ; f+Z_{\alpha} \sqrt{\frac{f(-f)}{n}}\right]}\right.$

## PEARSON CORRELATION COEFICIENT

$$
\mathrm{r}=\frac{\sum-\overline{\mathrm{X}}-\overline{\mathrm{Y}},}{\sqrt{\sum-\overline{\mathrm{X}}^{2},},}
$$

## CHI-SQUARE TEST ( $\mathbf{X}$ )

$\chi^{2}=\sum_{i=1}^{\text {r.c }} \frac{\left(\mathrm{f}_{\mathrm{i}}^{0}-\mathrm{f}_{\mathrm{i}}^{\mathrm{t}}\right)^{2}}{\mathrm{f}_{\mathrm{i}}^{\mathrm{t}}}$
where $X^{2}=X^{2}$ test statistic; $f_{i}^{\circ}=$ observed frequency; $f_{i}^{t}=$ theoretical frequency.
Critical region for $\alpha=0.05$ is $[3.84, \infty)$.

- If $X^{2} \in[3.84 ; \infty) \mathrm{H}_{0}$ is not accepted with a type I risk of error ( $\alpha$.
- If $X^{2} \notin[3.84 ; \infty) \mathrm{H}_{0}$ is accepted with a type II risk of error ( $\beta$ ).


## Z TEST FOR PROPORTIONS

Comparison of an observed frequency with a theoretical frequency
$z=\frac{\mathrm{p}-\pi}{\sqrt{\frac{\pi(1-\pi)}{\mathrm{n}}}}$
where $\pi=$ theoretical frequency (population frequency); $\mathrm{p}=$ observed frequency, $\mathrm{n}=$ sample size.
Testing the equality of two proportions
$z=\frac{\left(p_{1}-p_{2}\right)}{\sqrt{p(1-p)\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}}, p=\frac{p_{1} n_{1}+p_{2} n_{2}}{n_{1}+n_{2}}$
where $\mathrm{p}_{1}=$ frequency for $1^{\text {st }}$ sample; $\mathrm{n}_{1}=$ sample size of $1^{\text {st }}$ sample; $\mathrm{p}_{2}$ $=$ frequency of $2^{\text {nd }}$ sample; $\mathrm{n}_{2}=$ sample size for $2^{\text {nd }}$ sample.

## RISKS AND ODDS ON $2 \times 2$ CONTINGENCY TABLE

|  | Disease + | Disease - | Total |
| :--- | :--- | :--- | :--- |
| Test + | TP | FP | $=$ TP + FP |
| Test - | FN | TN | $=\mathrm{FN}+\mathrm{TN}$ |
| Total | $=\mathrm{TP}+\mathrm{FN}$ | $=\mathrm{FP}+\mathrm{TN}$ | $=\mathrm{TP}+\mathrm{FP}+\mathrm{FN}+\mathrm{TN}=\mathrm{n}$ |

where $\mathrm{TP}=$ true positive, $\mathrm{TN}=$ true negative, $\mathrm{FP}=$ false positive, $\mathrm{FN}=$ false negative

| Name | Formula |
| :--- | :--- |
| False positive rate | $=\mathrm{FP} /(\mathrm{FP}+\mathrm{TN})$ |
| False negative rate | $=\mathrm{FN} / \mathrm{FN}+\mathrm{TP})$ |
| Sensibility | $=\mathrm{TP} /(\mathrm{TP}+\mathrm{FN})$ |
| Specificity | $=\mathrm{TN} /(\mathrm{TN}+\mathrm{FP})$ |
| Accuracy | $=(\mathrm{TP}+\mathrm{TN}) / \mathrm{n}$ |
| Predictive positive value | $=\mathrm{TP} /(\mathrm{TP}+\mathrm{FP})$ |
| Predictive negative value | $=\mathrm{TN} /(\mathrm{TN}+\mathrm{FN})$ |
| Relative risk | $=\mathrm{TP}(\mathrm{FP}+\mathrm{TN}) / \mathrm{FN}(\mathrm{TP}+\mathrm{FP})$ |
| Odds ratio | $=(\mathrm{TP} \cdot \mathrm{TN}) /(\mathrm{FN} \cdot \mathrm{FP})$ |
| Attributable risk | $=\mathrm{TP} /(\mathrm{TP}+\mathrm{FP})-\mathrm{FN} /(\mathrm{FN}+\mathrm{TN})$ |

## Z TEST FOR COMPARING OF A SAMPLE MEAN WITH A POPULATION MEAN (EQUAL VARIANCES)

$$
\mathrm{Z}=\frac{\overline{\mathrm{X}}-\mu_{0}}{\frac{\sigma}{\sqrt{n}}}
$$

where $\mu=$ population mean; $\overline{\mathrm{X}}=$ sample mean; $\sigma=$ population standard deviation; $\mathrm{n}=$ sample size

- Critical region for $\alpha=0.05$ (two-tailed test)
$(-\infty,-1.96] \cup[1.96, \infty)$.


## STUDENT (T) TEST FOR COMPARING A MEAN WITH A KNOWN MEAN (UNKNOWN VARIANCES) <br> $\mathrm{t}=\frac{\mathrm{X}-\mu_{0}}{\frac{\mathrm{~s}}{\sqrt{\mathrm{n}}}}$ <br> where $\mu=$ population mean; $\overline{\mathrm{X}}=$ sample mean; $s=$ sample standard deviation; $n=$ sample size.

Degree of freedom (df): df = n-1

- Critical region for $\alpha$

$$
\left(-\infty,-t_{n-1,0.025}\right] \cup\left[t_{n-1,0.025},+\infty\right)
$$

## STUDENT (T) TEST FOR COMPARING TWO MEANS

 (EQUAL VARIANCES)$\mathrm{t}=\frac{\overline{\mathrm{X}}_{1}-\overline{\mathrm{X}}_{2}}{\sqrt{\mathrm{~s}\left(\frac{1}{\mathrm{n}_{1}}+\frac{1}{\mathrm{n}_{2}}\right)}}$
$s=\sqrt{\frac{\left(\mathrm{n}_{1}-1\right) \mathrm{s}_{1}^{2}+\left(\mathrm{n}_{2}-1\right) \mathrm{s}_{2}^{2}}{\mathrm{n}_{1}+\mathrm{n}_{2}-2}}$
$\overline{\mathrm{X}}_{1}=$ mean of $1^{\text {st }}$ sample; $\mathrm{n}_{1}=$ sample size of $1^{\text {st }}$ sample; $\mathrm{si}^{2}=$ variance of $1^{\text {st }}$ sample; $\bar{X}_{2}=$ mean of second sample; $\mathrm{n}_{2}=$ sample size of $2^{\text {nd }}$ sample; $s_{2}{ }^{2}=$ variance of $2^{\text {nd }}$ sample.

## STUDENT (T) TEST FOR COMPARING TWO PAIRED

MEANS
$\mathrm{t}=\frac{\overline{\mathrm{d}}}{\frac{\mathrm{s}}{\sqrt{\mathrm{n}}}}$, Where $\overline{\mathrm{d}}=\frac{\mathrm{d}_{1}+\mathrm{d}_{2}+\ldots+\mathrm{d}_{\mathrm{n}}}{\mathrm{n}} ; \mathrm{d}_{\mathrm{i}}=$ difference
between first and second/last determination $(1 \leq i \leq n)$; $\mathrm{s}=$ standard deviation of differences; $n=$ sample size

Z TEST FOR COMPARIND THE MEANS OF TWO POPULATIONS (KNOWN AND UNEQUAL VARIANCES)
$\mathrm{z}=\frac{\overline{\mathrm{X}}_{1}-\overline{\mathrm{X}}_{2}}{\sqrt{\frac{\mathrm{~s}_{1}^{2}}{\mathrm{n}_{1}}+\frac{\mathrm{s}_{2}^{2}}{\mathrm{n}_{2}}}}$
where $\overline{\mathrm{X}}_{1}=$ mean of $1^{\text {st }}$ sample; $\mathrm{n}_{1}=$ sample size of first sample; $\mathrm{s} 1^{2}$ $=$ variance of first sample; $\overline{\mathrm{X}}_{2}=$ mean of $2^{\text {nd }}$ sample; $\mathrm{n}_{2}=$ sample size of $2^{\text {nd }}$ sample; $s_{2}{ }^{2}=$ variance of $2^{\text {nd }}$ sample.

## SAMPLE SIZE ESTIMATION

Comparison of a mean with population mean (normal distributed data)
$n=\frac{\left(z_{1-\alpha}-z_{1-\beta}\right)^{2} \sigma^{2}}{(m-\mu)^{2}}$
Critical value for bilateral test: $\mathrm{Z} 1.5 \%=1.960, \mathrm{z} 1 \cdot \beta \beta-20 \%)=0.842$
Comparison of two means (data normal distributed)
$\mathrm{n}_{1}=\mathrm{n}_{2}=\frac{\left(\mathrm{z}_{1-\alpha / 2}+\mathrm{z}_{1-\beta}\right)^{2}\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right)}{\mathrm{d}^{2}}$
Means (data are not normal distributed)
$\mathrm{n}=\frac{\sigma^{2}}{\alpha \mathrm{k}^{2}}$
where $\mathrm{k}=$ the difference to be identified (clinical value choose arbitrary)

Means: there is no objective a priori of experiment
$n=\frac{\left(z_{1-\alpha}-z_{1-\beta}\right)^{2} \sigma^{2}}{(m-\mu)^{2}}$

Proportions
Central proportion (the value is near to 0.5):
$\mathrm{n}=\left[\frac{\left(\mathrm{z}_{1-\alpha / 2} \sqrt{\pi(1-\pi)}+\mathrm{z}_{1-\beta} \sqrt{\mathrm{p}(1-\mathrm{p})}\right.}{\mathrm{p}-\pi}\right]^{2}$
where $\pi=$ theoretical proportion; $\mathrm{p}=$ desired proportion
Extreme proportion (values near 0 or 1 ):
$\mathrm{n}=\left[\frac{\left(\mathrm{z}_{1-\alpha / 2} \sqrt{\pi}+\mathrm{z}_{1-\beta} \sqrt{\mathrm{p}}\right.}{\mathrm{p}-\pi}\right]^{2}$

