INFERENTIAL STATISTICS I - TESTING HYPOTHESIS ABOUT ONE SAMPLE MEAN: HINTS

BASIC CONCEPTS OF HYPOTHESIS TESTING

- Null hypothesis (H₀): an assertion that a parameter in a statistical model takes a particular value; it is assumed true until experimental evidence suggests otherwise.
- Alternative hypothesis (H₁/H_a): expresses the way in which the value of a parameter may derivate from that specified in the null hypothesis; it is assumed true when the experimental evidence suggests that the null hypothesis is false.
- *Type I error*: rejecting the null hypothesis when it is in fact true.
- *Type II error*: accepting the null hypothesis when it is in fact false.
- Test statistics: a function of a sample of observations that provides a basis for testing the validity of the null hypothesis.
- *Critical region*: the null hypothesis is rejected when calculated value of the test statistic lies within this region.
- *Critical value*: the value which determines the boundary of the critical region.
- Significance level (α , alpha): the size of the critical value; region probability of a type I error.
- One-tailed test: the critical value is located wholly at one end of the end of the sampling distribution of the test statistic; H1 involves < or > but not both.
- *Two-tailed test*: the critical region comprises areas at both ends of the sampling distribution of the test statistic; H1 involves ≠.

THEORETICAL BACKGROUND ON TESTING HYPOTHESIS ABOUT ONE SAMPLE MEANS

If a researcher wants to compare the mean of one sample with a hypothesized population value, the one-sample Z-test or one sample t-test must be applied. The selection will be based on the assumptions underlying the test: 1. Assumptions underlying the **Z-test**:

- Observations are independent of one another.
- The observations are randomly sampled from the population.
- Observations are normally distributed in the population.
- The population variance is known.
- 2. Assumptions underlying the **t-test**:
 - Observations are independent of one another.
 - The observations are randomly sampled from the population.
 - Observations are normally distributed in the population.
 - The population variance is not known.

A. TESTING HYPOTHESIS ABOUT ONE SAMPLE MEANS: Z-TEST (THE POPULATION MEAN AND STANDARD DEVIATION KNOWN)

To copy the requested values in the Z-test sheet:

- Select the column Hemoglobin at 6 months and Treatment schema.
- Copy the data and paste them in Z-test sheet.
- Sort the data descending by Treatment schema.
- Delete the cells corresponding to patients who received bi-weekly schema.
- Delete the column Treatment schema.

What the values in the Z-test table means and how can be read?

- Sample mean (m): The mean of the haemoglobin at 6 months for patients who received daily treatment schema is equal with 10.82 mg/dl.
- Hypothesis population mean (μ): The value 13 indicates that the population mean of hemoglobin of newborn children is equal to 13 mg/dl.
- Population standard deviation (σ): The population standard deviation must be known in order to apply the Z-test. For this analysis, the population standard deviation is equal to 1.16.
- *Count* (n): the number of observations in the sample (also known as sample size). In our analysis n is equal with 49.

• Standard error of the mean (s): $s = \frac{\sigma}{\sqrt{n}}$. The standard error of the mean for our hypothesis is equal with

0.17.

- Z: $Z = \frac{m \mu}{s}$. For our problem, the value is equal to -13.17.
- *Alpha:* The significance level for the statistical test (5% in our example).
- Probability one-tailed (one-tailed P-value): not applied for out case (see the alternative hypothesis).
- *Z critical one-tailed*: not applied for out case (see the alternative hypothesis).
- Probability two-tailed (two-tailed P-value): two-tailed probability associated with the obtained Z critical two-tailed. If the value is greater or equal with 0.05 then the null hypothesis is accepted; if is less than 0.05 the alternative hypothesis is accepted.
- *Z critical two-tailed*: is absolute value of the two-tailed critical value of Z for the selected value of alpha. For alpha equal with 0.05, the two-tailed critical value of Z is 1.96. If the Z value is greater than or equal with 1.96 then the alternative hypothesis is accepted; if is less than 1.96 the null hypothesis is accepted.

One sample Z-test				
	The mean of hemoglobin at 6 month is not different			
H ₀ hypothesis	by the population mean			
	The mean of hemoglobin at 6 month is different by			
H _a hypothesis	the population mean (two-tailed test)			
Population mean	13			
Population standard deviation	1.16			
Sample size (n)	=COUNT(A2:A50)			
Sample mean	=AVERAGE(A2:A50)			
Standard error of the sample mean	=population standard deviation/(SQRT(n))			
Z	=(sample mean - population mean)/(standard error of the mean))			
alpha	0.05			
Probability one-tailed	=1-NORMSDIST(ABS(Z))			
Z critical one-tailed	=ABS(NORMSINV(Alpha)			
Probability two-tailed	=2*(1-NORMSDIST(ABS(Z)))			
Z critical two-tailed	=ABS(NORMSINV(Alpha/2)			

To complete calculus on Z-test table:

Z-test conclusions (by examples):

- Statistical: H₁ is accepted.
- Clinical: The mean of hemoglobin at 6 months at patients who received daily treatment schema proved to be statistically significant smaller compared to population mean.

B. TESTING HYPOTHESIS ABOUT ONE SAMPLE MEAN: T-TEST

To calculates the values of t-test parameters:

One sample T-test		
State null hypothesis		
State alternative hypothesis		
Population mean	13	
Sample mean	=AVERAGE(A2:A28)	
Sample standard deviation	=STDEV(A2:A28)	
Sample size	=COUNT(A2:A28)	
Standard error of the mean	=E6/SQRT(E7)	
t	=(E5-E4)/E8	
alpha	0.05	
df	=E7-1	
Probability two-tailed	=TDIST(ABS(E9),E11,2)	
t critical two-tailed	=TINV(E10,E11)	

		Since probability for two-tailed is less tha	n 0.05 the
	Statistical conclusion	alternative hypothesis is accepted.	
		The mean of haemoglobin at 6 months of	sample
		included into the study is statistically sign	ificant smaller
	Clinical conclusion	compared to population mean.	
TDIST dialog window with explanations:			Absolute value of t parameter
	Function Argume	nts 🔹 😢	
	TDIST X abs(E9)		Select the cell where the value of df is (df =
	Deg_freedom	= 26	degree of freedom).
	_ Tails		Because we used a two-
	Returns the Student'	= 1.31323E-12	tailed test.
	Tails s =	pecifies the number of distribution tails to return: one-tailed distribution 1; two-tailed distribution = 2.	
	- Formula result =	1.31323E-12	
	Help on this function	OK Cancel	

TINV dialog window with explanations:

Function Arguments TINV Probability E10	? ≥ 3 = 0.05	Select the cell where the value of alpha is in your table.
Deg. freedom E11	N = 26	
Returns the inverse of the Student's t-distribution.	= 2.055530786	Select the cell where the value of df is (df = degree of freedom).
Deg_freedom is a positive integer indicating the nun characterize the distribution.	nber of degrees of freedom to	-
Formula result = 2.055530786		
Help on this function	OK Cancel	

Action button in PowerPoint presentation:

- [Slide Show- Action Button Action Button: Custom]
- Write the text do you want on the action button.
- To change color, size, position, etc. double click on the action button.
- Become active when you run your presentation, not when you are creating it.