INFERENTIAL STATISTICS II - TESTING HYPOTHESIS ON TWO SAMPLES MEANS: HINTS

Testing Hypothesis about the Difference between Two Means

Assumptions underlying the *paired samples t-Test*

- Observations are randomly sampled from the population(s) of interest.
- The observations are correlated.
- Observations are normally distributed in the population.
- The variance of the difference scores is unknown

A. TESTING HYPOTHESIS ON VARIANCES

To apply the F-test:

- [Tool Data Analysis F-test Two-Sample for Variances].
- F-test Two-Samples for Variances window by example (haemoglobin at 12 months)

(nput Variable <u>1</u> Range:	\$C\$2:\$C\$55		OK
Variable <u>2</u> Range:	\$C\$56:\$C\$100	3	Cancel
T Labels			Help
<u>Alpha:</u> 0.05			
Output options			
Output Range:	\$I\$2	<u>.</u>	
C New Worksheet Ply:			
New Worksheet Ply: New Worksheet	ſ		

- *Variable 1 Range*: select the data of the haemoglobin (6 months respectively 12 months) for rural group.
- *Variable 2 Range*: select the data of the haemoglobin (6 months respectively 12 months) for urban group.
- *Labels*: checked it if the first row of the input contains labels that should not be included in the data analysis.
- Alpha: refers to the type I error probability for the statistical test. Let's use the default value of 5%.
- Output options: put the results in the same sheet starting with E2 cell (for haemoglobin at 6 months)
 I2 cell (for haemoglobin at 12 months).
- *The results*: will look like in the image bellow:

E	F	G	Н		J	К
F-Test Two-Samp	le for Varian	ces		F-Test Two-Samp	le for Varian	ces
Haemoglobin at 6	months			Haemoglobin at 12	2 months	
	Bi-weekly	Daily			Bi-weekly	Daily
Mean	11.21	10.82		Mean	11.57	12.03
Variance	0.72	1.56		Variance	1.63	0.99
Observations	50	49		Observations	50	49
df	49	48		df	49	48
F	0.46			F	1.65	
P(F<=f) one-tail	0.0038			P(F<=f) one-tail	0.0428	
F Critical one-tail	0.62			F Critical one-tail	1.61	
The variances are	not equal			The variances are	not equal	

To read the output of F-test (e.g. Haemoglobin at 6 months):

- Mean: the mean of haemoglobin at 6 months is 11.21 mg/dl for patients with bi-weekly treatment compared to 10.82 mg/dl for patients with daily schema.
- Variance: the variance of haemoglobin for patients with bi-weekly treatment was 0.72, and for patients with daily treatment was of 1.56 mg/dl.

- Observations: 50 patients received bi-weekly treatment and 49 patients received daily treatment.
- *df*: the degree of freedom is equal with 50-1 = 49 for patients who received bi-weekly treatment and 49 1 = 48 for patients who received daily treatment.
- *F*: the obtained F was 0.46.
- P-value one-tail: the one-tailed probability of obtained F was 0.0038. Since the probability of obtained F is
 less than 0.05, the result is statistically significant (the alternative hypothesis is accepted: the variances of
 two groups are not equal). This result tells us that in comparing the means the t-test assuming unequal
 variance must be applied.

B. MEANS COMPARISON: T-TEST FOR TWO INDEPENDENT SAMPLES

To apply the t-test for independent samples:

- [Tools Data Analysis t-Test: Two-Sample Assuming Unequal Variances].
- **T**-test Unequal Variances window:

input Variable 1 Range:	4B\$2:\$B\$51	₩.	OK
Variable <u>2</u> Range:	\$B\$52:\$B\$100	<u> </u>	Cancel
Hypoth <u>e</u> sized Mean Differer	nce: 0		<u>H</u> elp
Labels Alpha: 0.05			
Output options			
Output Range:	\$E\$2		
C New Worksheet Ply:			
Hour House Dit.			

• Your results suppose to look like in the image bellow:

E	F	G	Н	1	J	К
t-Test: Two-Sample Assuming	Unequal Var	iances		t-Test: Two-Sample Assuming	Jnequal Vari:	ances
Haemoglobin at 6 months	1			Haemoglobin at 12 months		
	Bi-weekly	Daily			Bi-weekly	Daily
Mean	11.21	10.82		Mean	11.57	12.03
Variance	0.72	1.56		Variance	1.63	0.99
Observations	50	49		Observations	50	49
Hypothesized Mean Difference	0			Hypothesized Mean Difference	0	
df	84			df	92	
t Stat	1.81			t Stat	-1.97	
P(T<=t) one-tail	3.68E-02			P(T<=t) one-tail	2.58E-02	
t Critical one-tail	1.66			t Critical one-tail	1.66	
P(T<=t) two-tail	7.36E-02			P(T<=t) two-tail	5.16E-02	
t Critical two-tail	1.99			t Critical two-tail	1.99	
Conclusion				Conclusion		
Statistical: null hypothesis is accepted			Statistical: null hypothesis is accepted			
Clinical: there is no statistically significant difference between the mean of haemoglobin of patients who received bi-weekly treatment compared to those who received daily treatment.			Clinical: there is no statistically significant difference between the mean of haemoglobin of patients who received bi-weekly treatment compared to those who received daily treatment.		ifference s who ose who	

C. MEANS COMPARISON: T-TEST FOR TWO INDEPENDENT SAMPLES

To apply the Paired Samples t-test:

- [Tools Data Analysis t-Test: Paired Two Sample for Means]
- Test window:

Input Variable <u>1</u> Range:	\$B\$1:\$B\$51	😼 🛛 ок
Variable <u>2</u> Range:	\$C\$1:\$C\$51	Cancel
Hypothesized Mean Differe Labels Alpha: 0.05	nce: 0	

- *Variable 1 Range*: select the value that correspond to haemoglobin at 6 months for children who received bi-weekly treatment schema
- *Variable 2 Range*: select the value that correspond to haemoglobin at 12 months for children who received bi-weekly treatment schema
- *Hypothesized Mean Difference*: enter 0 to test the hypothesis that the mean difference is equal with zero.

• Your results will look like:

E	F	G	Н		J	K
t-Test: Paired Two Sample for Means				t-Test: Paired Two Sample for N	1eans	
bi-weekely treatment				daily treatment		
	Haemoglobin (mg/dl) 6 month	Haemoglobin (mg/dl) 12 month			Haemoglobin (mg/dl) 6 month	Haemoglobin (mg/dl) 12 month
Mean	11.21	11.57		Mean	10.82	12.03
Variance	0.72	1.63		Variance	1.56	0.99
Observations	50	50		Observations	49	49
Pearson Correlation	0.16			Pearson Correlation	0.66	
Hypothesized Mean Difference	0			Hypothesized Mean Difference	0	
df	49			df	48	
t Stat	-1.83			t Stat	-8.85	
P(T<=t) one-tail	0.0369			P(T<=t) one-tail	5.95E-12	
t Critical one-tail	1.68			t Critical one-tail	1.68	
P(T<=t) two-tail	0.0739			P(T<=t) two-tail	1.19E-11	
t Critical two-tail	2.01			t Critical two-tail	2.01	
Conclusion				Conclusion		
Statistical: Null hypothesis is a	ccepted.			Statistical: Alternative hypothes	is is accepted.	
Clinical: The bi-weekly treatmen	t is not efficient.			Clinical: The daily treatment sch	nema is efficient.	