# **INFERENTIAL STATISTICS III - CHI-SQUARE TEST OF INDEPENDENCE: HINTS**

#### CHI-SQUARE TEST OF INDEPENDENCE: THEORETICAL BACKGROUND

In research, when we are interested in investigating the relationship between qualitative variable, the appropriate test is sometimes the chi-square test of independence. The steps necessary to be follow in order to carry out this test are:

- Calculate the observed frequencies for each cell of the cross tabulation (the Pivot Table can be used here); •
- Calculate the expected frequencies for each cell of the cross tabulation (there is not a predefined formula to calculate expected frequencies);
- Compute the value of chi-square parameter;
- Evaluate the significance of obtained chi-square parameter.

The formula for the chi-square test of independence is give by:

$$\chi^2 = \sum \frac{O_i - E_i^2}{E_i}$$
 where O<sub>i</sub> is an observed cell frequency and E<sub>i</sub> is an expected cell frequency.

### Assumptions for the Chi-Square Test of Independence

- 1. Subjects are randomly and independently sampled from the population of interest
- 2. Measurements are obtained from a single sample
- 3. Variables included in the analysis are measured on a gualitative scale
- 4. Expected cell frequencies are greater than or equal to five.

## **MICROSOFT EXCEL**

To create the observed contingency table:

- [Data Pivot Table and Pivot Chart Report]:
  - Pivot Table and Pivot Chart Wizard-Step 1 of 3. The date are into the *Breastfeed.xls* file, so the Microsoft Excel List of Database is already been selected. Because we want to create a pivot table not a pivot chart, the option **Pivot Table** it will be selected:





Pivot Table and Pivot Chart Wizard-Step 2 of 3. Enter the range of the data (from A1 to C111) in the space provided (click on cell A1 in the worksheet Cross Tabulation and drag to cell B111).

| PivotTa                    | able and PivotC                         | hart Wizard -             | Step 2 of 3 | ? 🛛             |
|----------------------------|-----------------------------------------|---------------------------|-------------|-----------------|
| Where is<br><u>R</u> ange: | the data that you<br>Chi-Square'!\$A\$1 | want to use?<br>:\$C\$111 | <u></u>     | Bro <u>w</u> se |
| 0                          | Cancel                                  | < <u>B</u> ack            | Next >      | Einish          |

Pivot Table and Pivot Chart Wizard-Step 3 of 3. Put the report in the same worksheet as the 0 data. Select Existing worksheet. Click in the Existing worksheet window and then click on cell F2 in order to place the report two columns right beside data.



 Place by drag and drop the "BreastFeeding"/"Sex" variable on rows and "FerripriveAnemia" on columns. Drag and drop any variable ("FerripriveAnemia" or "BreastFeeding"/"Sex") on the area labelled **Drop Data Items Here.** The obtained table look like in the image bellow:

| F                         | G                  | Н   | I           |
|---------------------------|--------------------|-----|-------------|
| Count of FerripriveAnemia | FerripriveAnemia 👻 |     |             |
| Sex 👻                     | NO                 | YES | Grand Total |
| F                         | 48                 | 13  | 61          |
| M                         | 33                 | 16  | 49          |
| Grand Total               | 81                 | 29  | 110         |

Copy and paste the observed contingency table and change the table as in the image bellow:

| Observed    | FerripriveAnemia = NO | FerripriveAnemia =YES | Grand Total |
|-------------|-----------------------|-----------------------|-------------|
| Sex = F     | 48                    | 13                    | 61          |
| Sex = M     | 33                    | 16                    | 49          |
| Grand Total | 81                    | 29                    | 110         |

To create the expected contingency table:

Copy the GrandTotal structure of the observed table:

|             |                       |                       | 1.2         |
|-------------|-----------------------|-----------------------|-------------|
| Expected    | FerripriveAnemia = NO | FerripriveAnemia =YES | Grand Total |
| Sex = F     |                       |                       | 61          |
| Sex = M     |                       |                       | 49          |
| Grand Total | 81                    | 29                    | 110         |

• Apply the following formula to calculate the expected cell frequencies:

 $E_{i} = \frac{(Column Grand Total) \cdot (Row Grand Total)}{(Row Grand Total)}$ 

**Overall Grand Total** 

- To begin, click on the Sex = F/FerripriveAnemia = NO expected frequency cell (e.g. G17): =I17\*G19/I19
  - Press [Enter]. Cell G17 should contain an expected frequency of 45.
  - o Repeat the above steps to calculate the expected frequency for each of the remaining cells.

| Expected    | FerripriveAnemia = NO | FerripriveAnemia =YES | Grand Total |
|-------------|-----------------------|-----------------------|-------------|
| Sex = F     | 45                    | 16                    | 61          |
| Sex = M     | 36                    | 13                    | 49          |
| Grand Total | 81                    | 29                    | 110         |

To compute chi-square statistics:

- *Alpha*: use alpha equal to 0.05 for this analysis (significance level of 5%).
- df: the formula for the degree of freedom (df) for the chi-square test of independence is df = (r 1)·(c 1), where r = the number of rows in the cross tabulation and c = the number of columns in the cross tabulation. Because our cross tabulation has 2 rows and 2 columns, df = (2 1)·(2 1) = 1.
- Critical chi-square: the CHIINV function will be use in order to find the critical chi-square value.
  Select the corresponding cell and [Insert Function... Function category (Statistical) CHIINV]:
  - Click in the probability window of the CHIINV dialog box and enter the value of alpha
  - Deg\_freedom: click in the Deg\_freedom window and enter the df value by selecting the corresponding cell
- *p-value:* this is the probability associated with the observed value of chi-square. The CHITEST function will be use to find the p-value. Select the cell where you want the result and [Insert Function... Function category (Statistical) CHITEST]. Fill the CHITEST dialog box with requested information:

| Function Arguments                                                                                                                                                                                                           | Refers the range<br>associated with the                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| CHITEST<br>Actual range G11:H12                                                                                                                                                                                              |                                                                                                                  |
| Expected_range_G17:H18 _                                                                                                                                                                                                     | = {44,9181818181818                                                                                              |
|                                                                                                                                                                                                                              |                                                                                                                  |
| Returns the test for independence: the value fri<br>statistic and the appropriate degrees of freedon<br>Expected_range is the range of data that cor<br>and column totals to the gra                                         | The chi-squared distribution for the associated to the associated to the expected frequencies (just 4 cells)/    |
| Returns the test for independence: the value fri<br>statistic and the appropriate degrees of freedon<br><b>Expected_range</b> is the range of data that cor-<br>and column totals to the gra<br>Formula result = 0.179657149 | In the chi-squared distribution for the associated to the associated to the expected frequencies (just 4 cells)/ |

- Observed chi-square: the CHIINV function will be use to find the observed chi-square value.
  - *Probability*: enter here p-value
  - *Deg\_freedom*: enter the df value.
- The results will look like in the example bellow:

| M                                         |
|-------------------------------------------|
| of independence: sex vs ferriprive anemia |
| Sex and ferriprive anemia are independent |
| Sex and ferriprive anemia are dependent   |
| 0.05                                      |
| 1                                         |
| 3.8415                                    |
| 0.1797                                    |
| 1.8005                                    |
|                                           |
| HO is accepted                            |
| Sex and ferriprive anemia are independent |
|                                           |

# **EPIINFO**

To replace text: Ctrl+A – Ctrl + H

| Find and Rep        | lace                       | ? 🛽        |
|---------------------|----------------------------|------------|
| Fin <u>d</u> Rep    | place                      |            |
| Find what:          | YES                        | •          |
| Replace with:       | 1                          | •          |
|                     |                            | Options >> |
| Replace <u>A</u> ll | Replace Find All Find Next | Close      |

To work with EpiInfo:

- Open Analysis module of EpiInfo ([Start All Programs Epi Info Analysis]). Activate Read(Import) option.
  - a. Define the type of document which you wand to open (Excel file) & data source (find the **BreastFeed.xls** file on your partition on the server) & Worksheet (select here the *EpiInfo* work sheet):

|                                                     |               | 11220122               |          |                |
|-----------------------------------------------------|---------------|------------------------|----------|----------------|
| Current Project                                     |               |                        |          |                |
| C:\Sample.mdb                                       |               |                        |          |                |
| Data <u>F</u> ormats                                |               |                        |          |                |
| Excel 8.0                                           | -             |                        |          |                |
| <u>D</u> ata Source                                 |               | First row contains fie | ld names |                |
| G:\documents\students\2009_2010\Eng\MG\lp\Breastfee | ed-complete.> | - L.                   |          |                |
| Sho <u>w</u><br>• Worksheets                        |               |                        |          |                |
| Worksheets                                          |               |                        |          |                |
| <specify></specify>                                 |               |                        |          |                |
| Chi-Square<br>data                                  |               |                        |          |                |
| Epilnfo                                             |               |                        |          |                |
|                                                     |               |                        |          |                |
|                                                     |               |                        |          |                |
|                                                     |               |                        |          | <u>o</u> k     |
| Change <u>Project</u> <u>S</u> ave Only             | <u>o</u> k    | Clear                  | Help     | <u>C</u> ancel |
|                                                     |               |                        |          |                |

b. Confirm with OK. An message as in the picture bellow will appear:

| Analysis                      | Output                   |                 |               |                   |                          |                     |                                         |
|-------------------------------|--------------------------|-----------------|---------------|-------------------|--------------------------|---------------------|-----------------------------------------|
| <b>A</b><br>Pre <u>v</u> ious | <b>↓</b><br><u>N</u> ext | Last            | ()<br>History | Open              | Bookmark                 | Brint               | Maximiz <u>e</u>                        |
| Epi l                         | Info                     |                 |               |                   |                          |                     |                                         |
| Curren<br>Record              | nt View:<br>  Count:     | G:\docun<br>110 | nents\stude   | ents\2009<br>Date | _2010\Eng<br>2: 3/1/2010 | \MG\lp\]<br>8:48:01 | Breastfeed-complete.xls:EpiInfo\$<br>AM |

- c. Verify if the open data are the correct ones. From **Statistics** command activates with double click the **List** option. Chose all (\*) and validate with OK. It is correct if you have the HT and Diabetes status for all patients (as yes/no variables).
- Use Table function to answer to this question. Exposure variables is Sex and outcome variable is FerripriveAnemia

|                                           | Ou <u>t</u> come<br>Ferripriv | Vari<br>eAn | iable<br>emia | Ŧ           | Stratify by             |                               |
|-------------------------------------------|-------------------------------|-------------|---------------|-------------|-------------------------|-------------------------------|
| xposure Variable<br>Sex<br><u>V</u> eight | ▼ K<br>HEIGHT                 | イ<br>ル<br>+ | 1             |             | Matched                 | l Anal <u>v</u> sis           |
|                                           | 62.0<br>62.5                  | 20<br>37    | 40<br>59      |             | Option                  | al Page Settings              |
| Output to Table                           |                               |             |               |             | Colum<br><u>No Line</u> | <u>n</u> s per Page<br>e Wrap |
|                                           | Se                            | ettin       | gs            | <u>Save</u> | e Only                  | <u>о</u> к                    |
|                                           | (                             | Clea        | r             | H           | elp                     | Cancel                        |

The following results will be obtained:

| Single                                       | e Table Ana                | lysis                    |                         |      |
|----------------------------------------------|----------------------------|--------------------------|-------------------------|------|
|                                              | Point                      | 95% Confide              | ence Interv             | al   |
|                                              | Estimate                   | Lower                    | U                       | pper |
| PARAMETERS: Odds-based                       |                            |                          |                         |      |
| Odds Ratio (cross product)                   | 0.5586                     | 0.2374                   | 1.3143                  | (T)  |
| Odds Ratio (MLE)                             | 0.5616                     | 0.2340                   | 1.3302                  | (M)  |
|                                              |                            | 0.2163                   | 1.4324                  | (F)  |
| PARAMETERS: Risk-based                       |                            |                          |                         |      |
| Risk Ratio (RR)                              | 0.6527                     | 0.3483                   | 1.2229                  | (T)  |
| Risk Difference (RD%)                        | -11.3416                   | -28.0155                 | 5.3323                  | (T)  |
| (T=Taylor series; C=Cor<br>STATISTICAL TESTS | nfield; M=<br>Chi-square 1 | Mid-P; F=Fi<br>-tailed p | sher Exac<br>2-tailed p | ct)  |
| Chi-square - uncorrected                     | 1.8005                     |                          | 0.1796580               | )164 |
| Chi-square - Mantel-Haenszel                 | 1.7841                     |                          | 0.1816487               | 535  |
| Chi-square - corrected (Yates)               | 1.2636                     |                          | 0.2609656               | 5846 |
| Mid-p exact                                  | C                          | .0951260507              |                         |      |
| Fisher exact                                 | 0                          | 1306007799               |                         |      |

Since the question is about risk factors, we will look and interpret Risk Ratio or Odds Ratio (depending on research methodology –  $4^{th}$  year of study) as parameters and associated confidence interval. Since the values (both in this case OR = Odds Ratio and RR = Risk Ratio) are not higher than 1 the sex could not be considered a risk factor for FerripriveAmenia.

We also have the result of Chi-square test (are were obtained more easiest compared to Microsoft Excel).