Correlation \& Regression

OUtLINES

Correlation

- Definition
- Deviation Score Formula, Z score formula
- Hypothesis Test

Regression

- Intercept and Slope
- Un-standardized Regression Line
- Standardized Regression Line
- Hypothesis Tests

1. Direction

- Positive (+)
- Negative (-)

2. Degree of association

- Between - 1 and 1
- Absolute values signify strength

3. Form

- Linear
- Non-linear

Correlation: 1. Direction

Positive

Large values of $\mathrm{X}=$ large values of Y , Small values of $\mathrm{X}=$ small values of Y .

Large values of $\mathrm{X}=$ small values of Y
Small values of $\mathrm{X}=$ large values of Y
-e.g. SPEED and ACCURACY

Correlation: 2. Degree of association

Strong
(tight cloud)

Weak (diffuse cloud)

Correlation: 3. Form

Correlation: Definition

Correlation: a statistical technique that measures and describes the degree of linear relationship between two variables

Dataset

Scatterplot

The logic of regression

MEAN of X

	MEAN of X
Below average on X	Above average on X
Above average on Y	Abole average on Y
Below average on C	Above average on X
Below average on Y	Below average on Y

MEAN of Y

$$
\text { Cross-Product }=\quad(X-\bar{X})(Y-\bar{Y}) \left\lvert\, \begin{aligned}
& \text { For a strong positive association, } \\
& \text { the cross-products will mostly be } \\
& \text { positive }
\end{aligned}\right.
$$

The logic of regression

MEAN of X

The logic of regression

MEAN of X

	Below average on X Aboveaverage on Y	Above average on X Above average on Y
MEAN ofY		
	Below average on X Below average on Y	- Above average on X Below àverage on Y
Cross-Produ	$(X-\bar{X})(Y-\bar{Y})$	or a weak association, the coss-products will be mixed

Pearson Correlation Coefficient

Symbol: r, R
A value ranging from -1.00 to 1.00 indicating the strength (look to the number of correlation coefficient) and direction (look to the sign of the correlation coefficient) of the linear relationship.

- Absolute value indicates strength
- +/- indicates direction

$$
r=\frac{\sum(X-\bar{X})(Y-\bar{Y})}{\sqrt{\sum(X-\bar{X})^{2} \sum(Y-\bar{Y})^{2}}}
$$

Pearson Correlation Coefficient

- Assumptions:

1. The errors in data values are independent from one another
2. Correlation always requires the assumption of a straight-line relationship
3. The variables are assumed to follow a bivariate normal distribution

Pearson Correlation Coefficient

	Femur	Humerus	$(X-\bar{X})$	$(Y-\bar{Y})$	$(X-\bar{X})^{2}$	$(Y-\bar{Y})^{2}$	$(X-\bar{X})(Y-\bar{Y})$
A	38	$\mathbf{4 1}$					
B	56	63					
C	59	70					
D	64	72					
E	74	84					
Mean	58.2	66.00					
					SS_{X}	SS_{Y}	SP

$r=\frac{\mathrm{SP}}{\sqrt{\mathrm{SS}_{\mathrm{X}} \mathrm{SS}_{\mathrm{Y}}}}$

Pearson Correlation Coefficient

	Femur	Humerus	$(X-\bar{X})$	$(Y-\bar{Y})$	$(X-\bar{X})^{2}$	$(Y-\bar{Y})^{2}$	$(X-\bar{X})(Y-\bar{Y})$
A	$\mathbf{3 8}$	$\mathbf{4 1}$	-20.2	-25	408.04	625	505
B	$\mathbf{5 6}$	$\mathbf{6 3}$	-2.2	-3	4.84	9	6.6
C	$\mathbf{5 9}$	$\mathbf{7 0}$	0.8	$\mathbf{4}$.64	16	3.2
D	$\mathbf{6 4}$	$\mathbf{7 2}$	5.8	6	33.64	36	34.8
E	$\mathbf{7 4}$	$\mathbf{8 4}$	15.8	18	249.64	324	284.4
mean	58.2	66.00			$\mathbf{6 9 6 . 8}$	$\mathbf{1 0 1 0}$	$\mathbf{8 3 4}$
					SS_{X}	SS_{Y}	SP

$$
\mathbf{r}=0.99
$$

Pearson Correlation Coefficient

- For a strong positive association, the SP (sum of products) will be a big positive number

Pearson Correlation Coefficient

- For a strong negative association, the SP will be a big negative number

Below average on X Above average on X
\bullet
Above avorage on $Y \quad$ Above average on Y

Below average on X

Below average on Y

Pearson Correlation Coefficient

- For a weak association, the SP will be a small number (+ and - will cancel each other out)

Below average on X

Aboveaverage on Y

Below average on Y

Above average on X

Above average on Y
-
Above average on X

Below âverage on Y

Pearson Correlation Coefficient: Interpretation

- A measure of strength of association: how closely do the points cluster around a line?
- A measure of the direction of association: is it positive or negative?
- Colton [Colton T. Statistics in Medicine. Little Brown and Company, New York, NY 1974] rules:
- $\mathrm{R} \subset[-0.25$ to +0.25$] \rightarrow$ No relation
- $\mathrm{R} \subset$ (0.25 to +0.50$] \cup(-0.25$ to -0.50$] \rightarrow$ weak relation
- $\mathrm{R} \subset$ (0.50 to +0.75$] \cup$ (-0.50 to -0.75] \rightarrow moderate relation
- $\mathrm{R} \subset(0.75$ to +1$) \cup(-0.75$ to -1$) \rightarrow$ strong relation

Pearson Correlation Coefficient: Interpretation

- The P-value is the probability that you would have found the current result if the correlation coefficient were in fact zero (null hypothesis).
- If this probability is lower than the conventional significance level (e.g. 5%) ($p<0.05$) \rightarrow the correlation coefficient is called statistically significant.

Correlations

		ISET	LogPexp
ISET	Pearson Correlation	1	$.653^{* *}$
	Sig. (2-tailed)		$2.178 \mathrm{E}-016 \circ$
	N	124	$124 \cdot$
LogPexp	Pearson Correlation	$.653^{* *}$	1
	Sig. (2-tailed)	.000	
	N	124	124

**. Correlation is significant at the 0.01 level (2 -tailed).

Spearman Rank Correlation Coefficient

- Not continuous measurements
- The assumption of bivariate normal distribution is violated
- Symbol: ρ (Rho Greek Letter)

$$
\rho=\frac{\sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right) \times\left(\mathrm{y}_{\mathrm{i}}-\overline{\mathrm{y}}\right)}{\sqrt{\sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right)^{2} \sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{y}_{\mathrm{i}}-\overline{\mathrm{y}}\right)^{2}}}
$$

Spearman Rank Correlation Coefficient

- The sign of the Spearman
correlation indicates the direction of association between X (the independent variable) and Y (the dependent variable).
- $\rho=1 \rightarrow$ the two variables being compared are monotonically related. N.B. This does not give a perfect Pearson correlation.

Interpretation of r-squared (r^{2})

- The amount of covariation compared to the amount of total variation
- The percent of total variance that is shared variance
-E.g. If $r=0.80$, then X explains 64% of the variability in Y (and vice versa)

Properties of correlation coefficient

- A standardized statistic - will not change if you change the units of X or Y .
-The same whether X is correlated with Y or vice versa
- Fairly unstable with small n
- Vulnerable to outliers
- Has a skewed distribution

Correlation coefficient by example

- Enciu A, Zamfir CZ, Nicolescu A, Ida A. THE ANALYSIS OF CORRELATIONS BETWEEN THE MAINTRAITS OF WOOL PRODUCTION ON MILK BREED - PALAS. Lucrări Ştiințifice - Seria Zootehnie ????;57:5054.

Table 1 Correlation and regression coefficients between wool production and fiber diameter related to the age of the sheep (shearing season)

Sheep category	Breed	Shearing season (age)	$\mathrm{r} \pm \mathrm{sr}$	$\mathrm{b} \pm \mathrm{sb}$
Female yearlings	Milk Breed Palas	1	$0.187 \pm 0.055\left(^{* * *)}\right.$	$0.117 \pm 0.022\left({ }^{* * *)}\right.$
Male yearlings	Milk Breed Palas	1	$0.204 \pm 0.109(\mathrm{~ns})$	$0.185 \pm 0.098\left({ }^{*}\right)$
Ewes	Milk Breed Palas	$2-10$	$-0.043 \pm 0.218(\mathrm{~ns})$ $0.361 \pm 0.071\left({ }^{* * *)}\right.$	$-0.035 \pm 0.099(\mathrm{~ns})$ $0.125 \pm 0.025\left({ }^{* * *)}\right.$
Rams	Milk Breed Palas	$2-4$	$0.081 \pm 0.442(\mathrm{~ns})$ $0.257 \pm 0.176(\mathrm{~ns})$	$0.065 \pm 0.028(\mathrm{~ns})$ $0.196 \pm 0.113(\mathrm{~ns})$

Notes: ns - not significant $(P>0,05) \quad$ * - significant $(P<0,05) \quad$ ** - distinctly significant $(P<0,01)$
*** - very significant ($\mathrm{P}<0,001$)

Correlation matrix

Table 5

Correlation matrix for the broad set of explanatory variables considered in the analysis of risk factors associated with the SCM among lactating cow in the Savannah region of Nigeria

Variable	A	B	C	D	E	F	G	H	I	J	K	L
A	1											
B	0.9637	1										
C	0.0273	0.0148	1									
D	0.143	0.0945	0.0702	1								
E	0.0397	0.0434	0.5789	0.0182	1							
F	-0.1778	-0.1315	-0.3027	-0.2847	-0.1752	1						
G	-0.0949	-0.0563	-0.0903	-0.208	-0.1284	0.3426	1					
H	0.018	0.0298	0.5884	0.022	-0.027	-0.1781	0.0397	1				
I	-0.018	-0.0298	-0.5884	-0.022	0.027	0.1781	-0.0397	-1	1			
J	-0.019	-0.0751	0.4626	0.1916	0.2678	-0.6544	-0.217	0.2722	-0.2722	1		
K	-0.1964	-0.1503	-0.3469	-0.3396	-0.2008	0.8725	0.373	-0.2041	0.2041	-0.75	1	
L	-0.0015	-0.0016	0.0004	-0.0012	0.0073	0.0016	0.0012	0.0002	-0.0002	0.0009	0.0018	1

$\mathrm{A}=$ age, $\mathrm{B}=$ parity, $\mathrm{C}=$ washing hands before milking, $\mathrm{D}=$ breed, $\mathrm{E}=$ heifer and cow, $\mathrm{F}=$ month, $\mathrm{G}=$ cow type, $\mathrm{H}=$ pre-striping before milking, $I=$ feeding after milking, $J=$ washing of teats, $K=$ management system, $L=$ quarter.

Simple Linear regression Multiple linear regression

Linear Regression: Assumptions

- The errors in data values (e.g. the deviation from average) are independent from one another
- Regressions depends on the appropriateness of the model used in the fit
- The independent readings (X) are measured as exactly known values (measured without error)
- The variance of Y is the same for all values of X
- The distribution of Y is approximately normal for all values of X

Linear Regression

-But how do we describe the line?

- If two variables are linearly related it is possible to develop a simple equation to predict one variable from the other
- The outcome variable is designated the Y variable, and the predictor variable is designated the X variable
-E.g. centigrade to Fahrenheit:

$$
\mathrm{F}=32+1.8^{\circ} \mathrm{C}
$$

this formula gives a specific straight line

Linear Equation

- General form is $Y=a+b X$
- The prediction equation: $\tilde{Y}=a+b X$
- $\mathrm{a}=$ intercept, $\mathrm{b}=$ slope, $\mathrm{X}=$ the predictor, $\mathrm{Y}=$ the criterion
- a and b are constants in a given line; X and Y change

Slope and Intercept

- Equation of the line: $\tilde{Y}=a+b X$
- The slope b : the amount of change in Y with one unit change in X

$$
b=r \frac{s_{y}}{s_{x}}=\frac{S P}{S S_{X}}
$$

- The intercept a: the value of Y when X is zero

$$
a=\bar{Y}-b \bar{X}
$$

- The slope is influenced by r, but is not the same as r

Table 2

The effect of herd paratuberculosis sero-status (positive, negative or non-negative) on milk, fat and protein yield, somatic cell count score (SCCS) and calving interval [mean (95\% CI)]

Variables	Positive	Non-negative	Negative	F- value	Adjusted \mathbf{R}^{2}	P-value
Milk (kg)	 6981.44 (6594- $7369)$	$6928.00(6594-$ $7369)$	$6601.85(6408-$ $6795)$	1.995	0.447	0.138
Fat (kg)	$242.20(231-253)$	$238.50(226-251)$	$238.03(232-244)$	0.213	0.7	0.809
Protein (kg)	$222.09(216-228)$	$220.79(214-228)$	$215.75(213-219)$	2.031	0.871	0.133
SCCS (score)	$3.26(2.7-3.8)$	$3.38(2.7-4.0)$	$2.76(2.5-3.0)$	2.469	0.021	0.087
Calving interval	$386.42(368-405)$	$391.63(364-419)$	$381.67(372-391)$	0.696	0.063	0.5

Hoogendam et al. Irish Veterinary Journal 2009 62(Suppl 4):265 doi:10.1186/2046-0481-62-4-265

From: Indian J Clin Biochem. 2011 July: 26(3): 283-289.
Published online 2011 April 30. doi: 10.1007/s 12291-011-0136-0

Copyright/License Request permission to reuse

Fig. 2

Scatterplot graph of Pearson's correlation between spot 1 (FMV) and 24-h UAE. a spot 1 ACR (mg/g) versus 24-h UAE ($\mathrm{mg} / 24 \mathrm{~h}$), b spot $1 \mathrm{UAC}(\mathrm{mg} / \mathrm{l})$ versus $24-\mathrm{h} \mathrm{UAE} \mathrm{(mg/24} \mathrm{h)}$

Summary!

- Assessment of the strenght of association between 2 quantitative variables (normal distributed) \rightarrow correlation coefficient
- Prediction of one variable (Y) using another variable (X) \rightarrow regression

