Correlation & Regression

OUTLINES

- Correlation
 - Definition
 - Deviation Score Formula, Z score formula
 - Hypothesis Test
- Regression
 - Intercept and Slope
 - Un-standardized Regression Line
 - Standardized Regression Line
 - Hypothesis Tests

1. Direction

- Positive (+)
- Negative (-)

2. Degree of association

- Between -1 and 1
- Absolute values signify strength

3. Form

- Linear
- Non-linear

Correlation: 1. Direction

Y

Large values of X = large values of Y, Small values of X = small values of Y.

- e.g. IQ and SAT

-e.g. SPEED and ACCURACY

Small values of X = large values of

Correlation: 2. Degree of association

Correlation: 3. Form

Correlation: Definition

Correlation: a statistical technique that measures and describes the degree of linear relationship between two variables

The logic of regression

The logic of regression

The logic of regression

Symbol: r, R

A value ranging from -1.00 to 1.00 indicating the <u>strength</u> (look to the number of correlation coefficient) and <u>direction</u> (look to the sign of the correlation coefficient) of the linear relationship.

Absolute value indicates strength

+/- indicates direction

$$\mathbf{r} = \frac{\sum (\mathbf{X} - \overline{\mathbf{X}})(\mathbf{Y} - \overline{\mathbf{Y}})}{\sqrt{\sum (\mathbf{X} - \overline{\mathbf{X}})^2 \sum (\mathbf{Y} - \overline{\mathbf{Y}})^2}}$$

Assumptions:

- 1. The errors in data values are independent from one another
- 2.Correlation always requires the assumption of a <u>straight-line relationship</u>
- 3. The variables are assumed to follow a bivariate normal distribution

	Femur	Humerus	$(X-\overline{X})$	$(Y-\overline{Y})$	$(X-\overline{X})^2$	$(Y-\overline{Y})^2$	$(X-\overline{X})(Y-\overline{Y})$
А	38	41					
В	56	63					
С	59	70					
D	64	72					
E	74	84					
Mean	58.2	66.00					
					SS _X	SS _Y	SP

$$r = \frac{\text{SP}}{\sqrt{\text{SS}_{X}\text{SS}_{Y}}}$$

	Femur	Humerus	$(X-\overline{X})$	$(Y-\overline{Y})$	$(X-\overline{X})^2$	$(Y-\overline{Y})^2$	$(X-\overline{X})(Y-\overline{Y})$
А	38	41	-20.2	-25	408.04	625	505
В	56	63	-2.2	-3	4.84	9	6.6
С	59	70	0.8	4	.64	16	3.2
D	64	72	5.8	6	33.64	36	34.8
E	74	84	15.8	18	249.64	324	284.4
mean	58.2	66.00			696.8	1010	834
					SS _X	SS _Y	SP

r = 0.99

For a strong <u>positive</u> association, the SP (sum of products) will be a big positive number

 For a strong <u>negative</u> association, the SP will be a big negative number

 For a <u>weak</u> association, the SP will be a small number (+ and – will cancel each other out)

Pearson Correlation Coefficient: Interpretation

- A measure of strength of association: how closely do the points cluster around a line?
- A measure of the direction of association: is it positive or negative?
- Colton [Colton T. Statistics in Medicine. Little Brown and Company, New York, NY 1974] rules:
 - $R \subset [-0.25 \text{ to } + 0.25] \rightarrow \text{No relation}$
 - $R \subset (0.25 \text{ to } + 0.50] \cup (-0.25 \text{ to } 0.50] \rightarrow \text{weak relation}$
 - R ⊂ (0.50 to +0.75] ∪ (-0.50 to -0.75] → moderate relation
 - $R \subset (0.75 \text{ to } +1) \cup (-0.75 \text{ to } -1) \rightarrow \text{strong relation}$

Pearson Correlation Coefficient: Interpretation

- The P-value is the probability that you would have found the current result if the correlation coefficient were in fact zero (null hypothesis).
- If this probability is lower than the conventional significance level (e.g. 5%) (p < 0.05) → the correlation coefficient is called statistically significant.

	Сог	Correlation		
		coefficient		
ISET	Pearson Correlation	1	.653**	
	Sig. (2-tailed)		2.178E-016 •	° © 🗲 p-value 💫
	N	124	124	
LogPexp	Pearson Correlation	.653**	1	
	Sig. (2-tailed)	.000		Sample size
	Ν	124	124	

**. Correlation is significant at the 0.01 level (2-tailed).

Spearman Rank Correlation Coefficient

- Not continuous measurements
- The assumption of bivariate normal distribution is violated
- Symbol: ρ (Rho Greek Letter)

$$\rho = \frac{\sum_{i=1}^{n} (x_i - \bar{x}) \times (y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2 \sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

Spearman Rank Correlation Coefficient

- The sign of the Spearman correlation indicates the direction of association between X (the independent variable) and Y (the dependent variable).
- ρ =1 → the two variables being compared are monotonically related. N.B. This does not give a perfect Pearson correlation.

Interpretation of r-squared (r²)

- The amount of covariation compared to the amount of total variation
- The percent of total variance that is shared variance
- E.g. If r = 0.80, then X explains 64% of the variability in Y (and vice versa)

Properties of correlation coefficient

- A standardized statistic will not change if you change the units of X or Y.
- The same whether X is correlated with Y or vice versa
- Fairly unstable with small n
- Vulnerable to outliers
- Has a skewed distribution

Correlation coefficient by example

 Enciu A, Zamfir CZ, Nicolescu A, Ida A. THE ANALYSIS OF CORRELATIONS BETWEEN THE MAIN TRAITS OF WOOL PRODUCTION ON MILK BREED – PALAS. Lucrări Ştiinţifice - Seria Zootehnie ????;57:50-54.

Table 1 Correlation and regression coefficients between wool production and fiber diameter related to the age of the sheep (shearing season)

Sheep category	Breed	Shearing season (age)	r ± sr	b ± sb
Female yearlings	Milk Breed Palas	1	0.187±0.055(***)	0.117±0.022 (***)
Male yearlings	Milk Breed Palas	1	0.204±0.109 (ns)	0. 185±0.098 (*)
Ewes	Milk Breed Palas	2 - 10	-0.043±0.218(ns) 0.361±0.071 (***)	-0.035±0.099(ns) 0.125± 0.025 (***)
Rams	Milk Breed Palas	2 - 4	0.081±0.442(ns) 0.257±0.176 (ns)	0.065± 0.028 (ns) 0.196±0.113 (ns)

Notes: ns – not significant (P > 0,05) * - significant (P < 0,05) ** - distinctly significant (P < 0,01) *** - very significant (P < 0,001)

Correlation matrix

Table 5

Correlation matrix for the broad set of explanatory variables considered in the analysis of risk factors associated with the SCM among lactating cow in the Savannah region of Nigeria

Variable	A	В	C	D	E	F	G	н	I	J	к	L
А	1											
в	0.9637	1										
С	0.0273	0.0148	1									
D	0.143	0.0945	0.0702	1								
E	0.0397	0.0434	0.5789	0.0182	1							
F	-0.1778	-0.1315	-0.3027	-0.2847	-0.1752	1						
G	-0.0949	-0.0563	-0.0903	-0.208	-0.1284	0.3426	1					
н	0.018	0.0298	0.5884	0.022	-0.027	-0.1781	0.0397	1				
I	-0.018	-0.0298	-0.5884	-0.022	0.027	0.1781	-0.0397	-1	1			
J	-0.019	-0.0751	0.4626	0.1916	0.2678	-0.6544	-0.217	0.2722	-0.2722	1		
к	-0.1964	-0.1503	-0.3469	-0.3396	-0.2008	0.8725	0.373	-0.2041	0.2041	-0.75	1	
L	-0.0015	-0.0016	0.0004	-0.0012	0.0073	0.0016	0.0012	0.0002	-0.0002	0.0009	0.0018	1

A=age, B=parity, C=washing hands before milking, D=breed, E=heifer and cow, F=month, G=cow type, H=pre-striping before milking, I=feeding after milking, J=washing of teats, K=management system, L=quarter.

Shittu et al. BMC Veterinary Research 2012 8:134 doi:10.1186/1746-6148-8-134

Simple Linear regression Multiple linear regression

Linear Regression: Assumptions

- The errors in data values (e.g. the deviation from average) are independent from one another
- Regressions depends on the appropriateness of the model used in the fit
- The independent readings (X) are measured as exactly known values (measured without error)
- The variance of Y is the same for all values of X
- The distribution of Y is approximately normal for all values of X

Linear Regression

- But how do we describe the line?
- If two variables are linearly related it is possible to develop a simple equation to predict one variable from the other
- The outcome variable is designated the Y variable, and the predictor variable is designated the X variable
- E.g. centigrade to Fahrenheit:

F = 32 + 1.8°C

this formula gives a specific straight line

Linear Equation

- General form is Y = a + bX
- The prediction equation: $\tilde{Y} = a + bX$
 - a = intercept, b = slope, X = the predictor, Y = the criterion
- <u>a and b are constants in a given line; X and Y change</u>

Slope and Intercept

- Equation of the line: $\tilde{Y} = a + bX$
- The slope b: the amount of change in Y with one unit change in X

$$b = r \frac{s_y}{s_x} = \frac{SP}{SS_x}$$

The intercept a: the value of Y when X is zero

$$a = \overline{Y} - b\overline{X}$$

- The slope is influenced by r, but is not the same as r

Table 2

The effect of herd paratuberculosis sero-status (positive, negative or non-negative) on milk, fat and protein yield, somatic cell count score (SCCS) and calving interval [mean (95% CI)]

Variables	Positive	Non-negative	Negative	F- value	Adjusted R ²	P-value
Milk (kg)	6981.44 (6594- 7369)	6928.00 (6594- 7369)	6601.85 (6408- 6795)	1.995	0.447	0.138
Fat (kg)	242.20 (231-253)	238.50 (226-251)	238.03 (232-244)	0.213	0.7	0.809
Protein (kg)	222.09 (216-228)	220.79 (214-228)	215.75 (213-219)	2.031	0.871	0.133
SCCS (score)	3.26 (2.7-3.8)	3.38 (2.7-4.0)	2.76 (2.5-3.0)	2.469	0.021	0.087
Calving interval (day)	386.42 (368-405)	391.63 (364-419)	381.67 (372-391)	0.696	0.063	0.5

Hoogendam et al. Irish Veterinary Journal 2009 62(Suppl 4):265 doi:10.1186/2046-0481-62-4-265

From: Indian J Clin Biochem. 2011 July; 26(3); 283-289. Published online 2011 April 30. doi: 10.1007/s12291-011-0136-0 Copyright/License >

Request permission to reuse

Fig. 2

Scatterplot graph of Pearson's correlation between spot 1 (FMV) and 24-h UAE. a spot 1 ACR (mg/g) versus 24-h UAE (mg/24 h), b spot 1 UAC (mg/l) versus 24-h UAE (mg/24 h)

<< Prev Next >>

Summary!

- Assessment of the strenght of association between 2 quantitative variables (normal distributed) —> correlation coefficient
- Prediction of one variable (Y) using another variable (X) — regression